Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
526
2
avatar

Given positive integers $x$ and $y$ such that $x\neq y$ and $\frac{1}{x} + \frac{1}{y} = \frac{1}{18}$, what is the smallest possible value for $x + y$?

 Jul 13, 2021
 #1
avatar+208 
0

1x+1y=118x+y=xy1818x+18y=xyxy18x18y=0xy18x18y+324=324(x18)(y18)=324

factors of 324: 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, and 324

 

can you do it yourself now? 

 

JP

 Jul 13, 2021
 #2
avatar+26396 
+1

Given positive integers x and y such that xy and

1x+1y=118,
what is the smallest possible value for x+y?

 

1x+1y=118x+yxy=118xy=18(x+y)

 

AMGM

x+y2xyx+y2xy|square both sides(x+y)24xy|xy=18(x+y)(x+y)2418(x+y)x+y418x+y72

 

The smallest possible value for x+y is 72
Source: https://www.quora.com/Given-positive-integers-x-and-y-x-does-not-equal-y-and-frac-1-x-frac-1-y-frac-1-12-what-is-the-smallest-possible-value-for-x-y

 

In general:

1x+1y=1nx+y4n

The smallest possible value for x+y is 4n

 

laugh

 Jul 14, 2021

2 Online Users

avatar