Processing math: 100%
 
+0  
 
0
31
1
avatar+1855 

In triangle $ABC$, $\angle ABC = 90^\circ$, and $D$ is on side $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC$.  If $AB = 4,$ $BC = 3$, and $AC = 5,$ then find the area of $\triangle ADC$. Round your answer to the nearest integer.

 Jul 21, 2024
 #1
avatar+1950 
+1

Let's set up variables to complete this problem. 

Since AD bisects  BAC

Lets let  BD  = 3 - x

Lets let  CD =  x

 

Now, we can easily solve the problem with an equation. We have

BD/AB=CD/AC(3x)/4=x/55(3x)=4x155x=4x15=9xx=15/9=5/3=CD

 

Thus, taking this value of CD and plugging it into the area equation, we find

[ADC]=(1/2)(CD)(AB)=(1/2)(5/3)(4)=10/3

thus, The answer is 10/3

 

Thanks! :)

 Jul 21, 2024
edited by NotThatSmart  Jul 21, 2024

4 Online Users

avatar