In triangle ABC, points D and E lie on BC and AC, respectively. If AD and BE intersect at T so that AT/DT = 3 and BT/ET = 4, what is CD/BD?
In triangle ABC, points D and E lie on BC and AC, respectively.
If AD and BE intersect at T so that AT/DT = 3 and BT/ET = 4, what is CD/BD?
Let →CA=→bLet →CB=→aLet μ=34=ATADLet 1−μ=14=DTADLet ρ=45=BTBELet 1−ρ=15=ETBELet λ=BDBCLet 1−λ=CDBCLet 1−λλ=CDBDLet ϵ=CECA
In C-D-T-E(1−λ)→a+(1−μ)[→b−(1−λ)→a]=ϵ→b+(1−ρ)(→a−ϵ→b)(1−λ)→a+(1−μ)→b−(1−μ)(1−λ)→a=ϵ→b+(1−ρ)→a−(1−ρ)ϵ→b)→a[(1−λ)−(1−μ)(1−λ)−(1−ρ)]=→b[ϵ−(1−ρ)ϵ−(1−μ)]→a[(1−λ)(1−(1−μ))−(1−ρ)]=→b[ϵ−(1−ρ)ϵ−(1−μ)]→a[(1−λ)μ)−(1−ρ)⏟=0]=→b[ϵ−(1−ρ)ϵ−(1−μ)⏟=0]
(1−λ)μ−(1−ρ)=0(1−λ)μ=(1−ρ)1−λ=(1−ρ)μ1−λ=(1−ρ)μλ=1−(1−ρ)μλ=μ−(1−ρ)μCDBD=1−λλCDBD=(1−ρ)μμ−(1−ρ)μCDBD=(1−ρ)μ−(1−ρ)CDBD=1534−15CDBD=151120CDBD=15∗2011CDBD=411