Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
 
+0  
 
+1
9
2
avatar+1519 

In triangle ABC, AB=15, BC=9, and AC=10. Find the length of the shortest altitude in this triangle.

 Feb 17, 2025

Best Answer 

 #1
avatar+24 
+1

Using Herons Formula,

sqrt(s(s-AB)(s-BC)(s-CA)) = sqrt(17(17-15)(17-9)(17-10)) = sqrt(17 * 2 * 8 * 7) = sqrt(1904) = 4√119

 

Then, you solve for the altitudes:

BC_a = (2 * A) / BC = (2 * 4√119) / 9 = (8√119) / 9

CA_a = (2 * A) / CA = (2 * 4√119) / 10 = (8√119) / 10 = (4√119) / 5

AB_a = (2 * A) / AB = (2 * 4√119) / 15 = (8√119) / 15

 

The shortest one is (8√119) / 15.

 Feb 17, 2025
 #1
avatar+24 
+1
Best Answer

Using Herons Formula,

sqrt(s(s-AB)(s-BC)(s-CA)) = sqrt(17(17-15)(17-9)(17-10)) = sqrt(17 * 2 * 8 * 7) = sqrt(1904) = 4√119

 

Then, you solve for the altitudes:

BC_a = (2 * A) / BC = (2 * 4√119) / 9 = (8√119) / 9

CA_a = (2 * A) / CA = (2 * 4√119) / 10 = (8√119) / 10 = (4√119) / 5

AB_a = (2 * A) / AB = (2 * 4√119) / 15 = (8√119) / 15

 

The shortest one is (8√119) / 15.

CocoOwen Feb 17, 2025
 #2
avatar+15082 
+1

Find the length of the shortest altitude in this triangle.

 

general circle equation

 

 

 

 

 

laugh !

 Feb 18, 2025

2 Online Users

avatar
avatar