Processing math: 100%
 
+0  
 
0
17
1
avatar+339 

In triangle $ABC$, $\angle ABC = 90^\circ$, and $D$ is on side $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC$. If $AB = 4,$ $BC = 3$, and $AC = 5,$ then find the area of $\triangle ADC$. Round your answer to the nearest integer.

 Sep 18, 2024
 #1
avatar+1950 
+1

We can define some variables from the information given from the problem. 

First, since we know that AD bisects BAC, let's name variables

Let  BD  = 3 - x

Let  CD =  x

 

Thus, we can plug the two numbers in to get the equation

BD/AB=CD/AC(3x)/4=x/55(3x)=4x155x=4x15=9xx=15/9=5/3=CD

 

Finally, plugging in these values for the area, we find that

[ADC]=(1/2)(CD)(AB)=(1/2)(5/3)(4)=10/3

 

Thus, 10/3 is our answer. 

 

Thanks! :)

 Sep 19, 2024
edited by NotThatSmart  Sep 19, 2024

6 Online Users

avatar
avatar