Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
32
1
avatar+1855 

Points $A,$ $B,$ and $C$ are given in the coordinate plane. There exists a point $Q$ and a constant $k$ such that for any point $P$,
PA^2 + PB^2 + PC^2 = 3PQ^2 + k.
If $A = (7,-11),$ $B = (10,13),$ and $C = (18,-22)$, then find the constant k.

 Jul 21, 2024
 #1
avatar+1950 
+1

We can use variables to complete this problem.

Let's let P = (x,y)

Plugging this value of P into what we know, we have


PA2+PB2+PC2=(x7)2+(y+11)2+(x10)2+(y13)2+(x18)2+(y+22)2

3x270x+3y2+40y+1247
3[x270/3x+y2+40/3y]+1247

 

Now, we must complete the square for x and y. Doing this, we get

3[x270/3x+4900/36+y2+40/3y+1600/36]+12474900/121600/123[(x70/6]2+(y+40/6)2]+2116/3Q=(70/6,40/6)=(35/3,20/3)

 

Thus, we have k = 2116 / 3

 

So our final answer is 2116/3. 

 

Thanks! :)

 Jul 21, 2024
edited by NotThatSmart  Jul 21, 2024

3 Online Users