Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
Since sine and cosine are co-functions, we have....
x/3 + 10 + x = 90 subtract 10 from both sides and simplify
(4/3)x = 80 multiply both sides by 3/4
x = (3/4)* 80 = 60°
Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
sin(x3+10)=cosx
cosx=√1−sin2x
sin(x3+10)=√1−sin2x
sin2(x3+10)=1−sin2x
x1=12,52765316663493rad
x2=−6,205750411731104rad
!
Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
1. x1 = ?
sin(x3+10∘)=cos(x)|cos(x)=sin(90∘−x)sin(x3+10∘)=sin(90∘−x)x3+10∘=90∘−xx+x3+10∘=90∘x+x3=80∘x⋅(1+13)=80∘x⋅(43)=80∘x=80∘⋅34x1=60∘
2. x2 = ?
sin(x3+10∘)=cos(x)|cos(x)=cos(−x)sin(x3+10∘)=cos(−x)|cos(−x)=sin(90∘−(−x))sin(x3+10∘)=sin(90∘−(−x))sin(x3+10∘)=sin(90∘+x)x3+10∘=90∘+xx−x3=−80∘x⋅(1−13)=−80∘x⋅(23)=−80∘x=−80∘⋅32x2=−120∘