If
f(x)=ax+2,
solve for the value of a such that f(0)=f−1(−3a).
My attempt:
f(x)=ax+2f(0)=a0+2f(0)=a2
f(x)=ax+2x=af−1(x)+2x(f−1(x)+2)=axf−1(x)+2x=axf−1(x)=a−2xf−1(x)=a−2xx|x=−3af−1(−3a)=a−2(−3a)−3af−1(−3a)=a+6a−3af−1(−3a)=7a−3af−1(−3a)=−73f(0)=f−1(−3a)a2=−73a=−143
