Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1387
2
avatar

Find the ones digit of the largest power of 2 that divides into (2^4)!.

 Jul 30, 2016
 #1
avatar+23254 
+4

To find the largest power of 2 that divides into (24)!:

First:  simplify (24)!   --->   (24)!  =  (16)!

 

16! = 16 x 15 x 14 x ... x 2 x 1

 

But, if we want to find a number that divides into 16!, we don't really care about the odd numbers in  16 x 15 x ... x 2 x 1.

All we need to look at are the even factors:  16 x 14 x 12 x 10 x 8 x 4 x 2.

16  = 24

14 = 2 x 7

12 = 22 x 3

10 = 2 x 5

8 = 23

6 = 2 x 3

4 = 22

2 = 2

So, the total number of factors is 4 + 1 + 2 + 1 + 3 + 1 + 2 + 1  =  15     <---   Answer

 

As a check:  16! / 215  =  638 512 875  (no further factors of 2)

 Jul 30, 2016
 #2
avatar+26396 
0

Find the ones digit of the largest power of 2 that divides into (2^4)!.

 

[...] integer Part

 

power of 2:

[2421]+[2422]+[2423]+[2424]=23+22+21+1=8+4+2+1=1524!=215

 

power of 3:

[1631]+[1632]=5+1=624!=21536

 

power of 5:

[1651]=324!=2153653

 

power of 7:

[1671]=224!=215365372

 

power of 11:

[16111]=124!=215365372111

 

power of 13:

[16131]=124!=215365372111131

 

16!=2153653721113

 

laugh

 Aug 1, 2016

3 Online Users

avatar
avatar