(a)
sin2θ+cos2θ=1 by the Pythagorean Identity.
(13)2+cos2θ=1 because we are given that sinθ=13
19+cos2θ=1 cos2θ=1−19 cos2θ=89 cosθ=±√89 cosθ=±2√23
Since θ is in Quadrant II, cos θ must be negative. So cosθ=−2√23
(b)
sin(θ+π6)=sinθcosπ6+cosθsinπ6 by the angle sum formula for sin
sin(θ+π6)=(13)(√32)+(−2√23)(12) sin(θ+π6)=√36−2√26 sin(θ+π6)=√3−2√26
(c)
cos(θ−π3)=cosθcosπ3+sinθsinπ3 by the angle difference formula for cos
Now plug in the values for cos θ, cos(pi/3) , sin θ , and sin(pi/3) and simplify. Can you finish this one?
(d)
To use the angle sum formula for tan, let's first find tan θ.
tanθ=sinθcosθ=(13)(−2√23)=−12√2=−√24
tan(θ+π4)=tanθ+tanπ41−tanθtanπ4 by the angle sum formula for tan
tan(θ+π4)=(−√24)+(1)1−(−√24)(1) tan(θ+π4)=4−√24+√2
Thanks, man. On d, do you think I need to rationalize the denominator? I know how, but do I need to?