Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
891
6
avatar+895 

Find the exact value.

 May 10, 2019
 #1
avatar+9488 
+3

(a)

 

sin2θ+cos2θ=1       by the Pythagorean Identity.

 

(13)2+cos2θ=1        because we are given that  sinθ=13

 

19+cos2θ=1 cos2θ=119 cos2θ=89 cosθ=±89 cosθ=±223

 

Since  θ  is in Quadrant II,  cos θ  must be negative. So   cosθ=223

 

(b)

 

sin(θ+π6)=sinθcosπ6+cosθsinπ6     by the angle sum formula for sin

 

sin(θ+π6)=(13)(32)+(223)(12) sin(θ+π6)=36226 sin(θ+π6)=3226

 

(c)

 

cos(θπ3)=cosθcosπ3+sinθsinπ3     by the angle difference formula for cos

 

Now plug in the values for  cos θ,  cos(pi/3) ,  sin θ , and  sin(pi/3)  and simplify. Can you finish this one?

 

(d)

 

To use the angle sum formula for tan, let's first find  tan θ.

 

tanθ=sinθcosθ=(13)(223)=122=24

 

tan(θ+π4)=tanθ+tanπ41tanθtanπ4     by the angle sum formula for tan

 

tan(θ+π4)=(24)+(1)1(24)(1) tan(θ+π4)=424+2

 May 10, 2019
 #2
avatar+895 
+2

Thanks, man. On d, do you think I need to rationalize the denominator? I know how, but do I need to?

AdamTaurus  May 10, 2019
 #3
avatar+9488 
+2

I don't know either, but I guess it wouldn't hurt. Maybe better to be safe than sorry!

hectictar  May 10, 2019
 #4
avatar+895 
+2

Nice, thanks!

AdamTaurus  May 10, 2019
 #5
avatar+895 
+2

I got the same answer for c as the answer for b. Is that right?

AdamTaurus  May 10, 2019
 #6
avatar+9488 
+2

Yep they're the same!

hectictar  May 10, 2019

1 Online Users