Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1058
5
avatar

Find the distance (departure) to the nearest whole mile between initial position 50° 00' N 02° 00' W and 50° 00' N 01° 26' W 

 Jan 23, 2017

Best Answer 

 #5
avatar+26396 
+65

Find the distance (departure) to the nearest whole mile between

initial position 50° 00' N 02° 00' W

and 50° 00' N 01° 26' W 


Set Latitude lat1=50Set Longitude lon1=2Set Latitude lat2=50Set Longitude lon2=126=4330


cos(g)=cos(90lat1)cos(90lat2)+sin(90lat1)sin(90lat2)cos(lon2lon1)with g: Great circle distanceSince cos(90°a)=sin(a) and sin(90°a)=cos(a) applies, the formula simplifies to: cos(g)=sin(lat1)sin(lat2)+cos(lat1)cos(lat2)cos(lon2lon1)dist=6378.388π/180gwith dist: distance in km 

 

cos(g)=sin(50)sin(50)+cos(50)cos(50)cos(126(2))cos(g)=sin(50)2+cos(50)2cos(126+2)cos(g)=sin(50)2+cos(50)2cos(4330+2)cos(g)=sin(50)2+cos(50)2cos(1730)cos(g)=0.58682408883+0.41317591117cos(0.56666666667)cos(g)=0.58682408883+0.413175911170.99995109238cos(g)=0.99997979255g=arccos(0.99997979255)g=0.36424544098dist=6378.388π/1800.36424544098dist=40.5492126920 kmdist=40.5492126920 km1.609344kmmi=25.1961126347 mi

 

laugh

 Jan 23, 2017
 #1
avatar+118703 
0

Find the distance (departure) to the nearest whole mile between initial position 50° 00' N 02° 00' W and 50° 00' N 01° 26' W '

 

 

I am working on the Earth being a sphere with a radius of 3959 miles

These two places both have a latitude of 50 degrees north and the longitudes are different by 24 degrees.

 

I need to work out what the radius of the earth is on the minor circle of 50 degrees north.

 

sin(9050)=r39593959sin(40)=rr=2544.8miles distance=243602π2544.8=1066miles

 

 

 

 

*

 Jan 23, 2017
 #4
avatar+118703 
+5

Yes Chris wouild be right I read the quesiton incorrectly.

 

Find the distance (departure) to the nearest whole mile between initial position 50° 00' N 02° 00' W and 50° 00' N 01° 26' W

I read the second one as 26 degrees west INSTEAD OF  1 degree and 26 minutes west.

 

I will do the last bit a again.  I am assumingthat the earth is a perfect sphere - which it isn't.  

And that the 2 points are both at sea level.

 

The difference in longitude is 34 seconds.

 

distance=34360602π2544.8=25miles

 

Now wolfram alpha and I agree  laugh

Melody  Jan 23, 2017
 #2
avatar+130466 
+5

According to WolframAlpha  ≈ 25.24 miles  = 25 miles

 

http://www.wolframalpha.com/input/?i=distance+between+50%C2%B0+00%27+N+02%C2%B0+00%27+W+and+50%C2%B0+00%27+N+01%C2%B026%27+W

 

 

 

cool cool cool

 Jan 23, 2017
 #3
avatar+37165 
+5

...and here is an online calculator for such things:

40.5 km = 25.17 statute miles  is what it answers.... (21.87 nm)

http://www.movable-type.co.uk/scripts/latlong.html

 Jan 23, 2017
 #5
avatar+26396 
+65
Best Answer

Find the distance (departure) to the nearest whole mile between

initial position 50° 00' N 02° 00' W

and 50° 00' N 01° 26' W 


Set Latitude lat1=50Set Longitude lon1=2Set Latitude lat2=50Set Longitude lon2=126=4330


cos(g)=cos(90lat1)cos(90lat2)+sin(90lat1)sin(90lat2)cos(lon2lon1)with g: Great circle distanceSince cos(90°a)=sin(a) and sin(90°a)=cos(a) applies, the formula simplifies to: cos(g)=sin(lat1)sin(lat2)+cos(lat1)cos(lat2)cos(lon2lon1)dist=6378.388π/180gwith dist: distance in km 

 

cos(g)=sin(50)sin(50)+cos(50)cos(50)cos(126(2))cos(g)=sin(50)2+cos(50)2cos(126+2)cos(g)=sin(50)2+cos(50)2cos(4330+2)cos(g)=sin(50)2+cos(50)2cos(1730)cos(g)=0.58682408883+0.41317591117cos(0.56666666667)cos(g)=0.58682408883+0.413175911170.99995109238cos(g)=0.99997979255g=arccos(0.99997979255)g=0.36424544098dist=6378.388π/1800.36424544098dist=40.5492126920 kmdist=40.5492126920 km1.609344kmmi=25.1961126347 mi

 

laugh

heureka Jan 23, 2017

3 Online Users

avatar
avatar