Find the area of the shaded region below.
I am so terrible at these problems :(
yes they are not so easy :)
Area=−2∫10(y2−2)dy+∫1−1(ey)dy=−2∗[y33−2y]10+[ey]1−1=−2∗[(13−2)−(0−0)]+[e1−e−1]=−2∗[(−53)]+[e−1e]=103+e−1e=10e+3e2−33eunits2
Ask if you have questions about what I have done :)
The cross-sectional area, A, is given by :
1
∫ [right function] - [left function] dy
-1
So we have
1
∫ e^y - [ y^2 - 2] dy =
-1
1 1 1
e^y] - y^3/3 ] + 2y ] =
-1 -1 -1
e - 1/e - [1/3 + 1/3] + 4 =
10/3 + e - 1/e ≈ 5.6837 units^2
Find the area of the shaded region below.
f(y)=eyg(y)=y2−2A=y=1∫y=−1[f(y)−g(y)] dyA=y=1∫y=−1[ey−(y2−2)] dyA=y=1∫y=−1(ey−y2+2) dyA=[ ey−y33+2y ]y=1y=−1A=e1−133+2⋅1−(e−1−(−1)33+2⋅(−1))A=e−13+2−(1e+13−2)A=e−13+2−1e−13+2A=e−1e−23+4A=e−1e+103A=2.71828182846−0.36787944117+3.33333333333A=5.68373572062