Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
993
1
avatar

f(t)=4cost+2sin2t, [0,pi/2]

I found absolute min=0

What is ABSOLUTE MAX?

 Oct 17, 2016
 #1
avatar+26396 
0

f(t)=4cost+2sin2t, [0,pi/2]

What is ABSOLUTE MAX?

 

 

f(t)=4cos(t)+2sin(2t)0tπ2f(t)=4[sin(t)]+2cos(2t)2f(t)=4sin(t)+4cos(2t)|find min/max f(t)=00=4sin(t)+4cos(2t)|:40=sin(t)+cos(2t)cos(2t)sin(t)=0|cos(2t)=cos2(t)sin2(t)|=1sin2(t)sin2(t)|=12sin2(t)cos(2t)sin(t)=0|cos(2t)=12sin2(t)12sin2(t)sin(t)=0|(1)1+2sin2(t)+sin(t)=02sin2(t)+sin(t)1=0|substitute: u=sin(t)2u2+u1=0u1,2=1±(1)242(1)22u1,2=1±1+84u1,2=1±94u1,2=1±34u1=1+34u1=12u2=134u2=1t1=arcsin(u1)t1=arcsin(12)t1=30 or t1=π6t2=arcsin(u2)t2=arcsin(1)t2=90 or t2=π2|no solution because 0tπ2

 

f(t)=4cos(t)+2sin(2t)f(30)=4cos(30)+2sin(230)f(30)=4cos(30)+2sin(60)f(30)=432+232f(30)=23+3f(30)=33f(30)=5.19615242271

 

Max or min at t=30(=π6)f(30)=5.196?
y"(t)=4cos(t)4sin(2t)2y"(t)=4cos(t)8sin(2t)y"(30)=4cos(30)8sin(230)y"(30)=4cos(30)8sin(60)y"(30)=432832y"(30)=1232y"(30)=63|maximum because y(30)<0

 

Max at t=30(=π6)f(30)=5.196

 

laugh

 Oct 18, 2016

3 Online Users