Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0
Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0
In trigonometry, the tangent half-angle formulas relate the tangent of one half of an angle to trigonometric functions of the entire angle. They are as follows:
sin(α)=2⋅tanα21+tan2α2cos(α)=1−tan2α21+tan2α2tan(α)=2⋅tanα21−tan2α2 or sin(2α)=2⋅tanα1+tan2αcos(2α)=1−tan2α1+tan2αtan(2α)=2⋅tanα1−tan2α
sin(2x)=2⋅tanx1+tan2xsin(2x)=2⋅(−12)1+(−12)2sin(2x)=−11+14sin(2x)=−45cos(2x)=1−tan2x1+tan2xcos(2x)=1−141+14cos(2x)=34⋅45cos(2x)=35tan(2x)=2⋅tanx1−tan2xtan(2x)=2⋅(−12)1−(−12)2tan(2x)=−11−14tan(2x)=−43
Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0
If a right angles triangle has the two short sides of 1 and 2 then the hypotenuse must be sqrt5
since tan is neg the angle is in the 2nd or 4th quads and since cos is pos, x must be in the 4th quad.
tan x = −1/2 cosx= +2/sqrt5 sinx= -1/sqrt5
sin2x= 2sinxcosx = 2* -1/sqrt5 * 2/sqrt5 = -4/5
cos2x= cos^2x-sin^2x = 4/5-1/5 = 3/5
I did it in my head so I hope I didn't do anything stupid. You are capable of checking yourself.
Any question, just ask. :)
Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0
In trigonometry, the tangent half-angle formulas relate the tangent of one half of an angle to trigonometric functions of the entire angle. They are as follows:
sin(α)=2⋅tanα21+tan2α2cos(α)=1−tan2α21+tan2α2tan(α)=2⋅tanα21−tan2α2 or sin(2α)=2⋅tanα1+tan2αcos(2α)=1−tan2α1+tan2αtan(2α)=2⋅tanα1−tan2α
sin(2x)=2⋅tanx1+tan2xsin(2x)=2⋅(−12)1+(−12)2sin(2x)=−11+14sin(2x)=−45cos(2x)=1−tan2x1+tan2xcos(2x)=1−141+14cos(2x)=34⋅45cos(2x)=35tan(2x)=2⋅tanx1−tan2xtan(2x)=2⋅(−12)1−(−12)2tan(2x)=−11−14tan(2x)=−43