Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
778
4
avatar

Find a closed form for

S_n=1*1!+2*2!+...+n*n!.

for integers n>=1. Your response should have a factorial.

 Aug 9, 2016

Best Answer 

 #3
avatar+26396 
+5

Find a closed form for

S_n=1*1!+2*2!+...+n*n!.

for integers n>=1. Your response should have a factorial.

 

n=(n+1)1nn!=[ (n+1)1 ]n!nn!=(n+1)n!n!nn!=(n+1)!n!

 

nnn!=(n+1)!n!111!=2!1!222!=3!2!333!=4!3!444!=5!4!555!=6!5!nnn!=(n+1)!n!Σ11!+22!+...+nn!=(n+1)!1!

 

laugh

 Aug 11, 2016
 #1
avatar
0

Find a closed form for

S_n=1*1!+2*2!+...+n*n!.

for integers n>=1. Your response should have a factorial.

 

(1!+2 2!+...+n n!) = sum_(k=1)^n k k! = (n+1)!-1

 Aug 9, 2016
 #2
avatar+26396 
+5

Find a closed form for

S_n=1*1!+2*2!+...+n*n!.

for integers n>=1.

Your response should have a factorial.

 

Example for n=4:

S4=11!+22!+33!+44!|4!=3!4S4=11!+22!+33!+43!4S4=11!+22!+3!(3+44)S4=11!+22!+3!(3+42)|3!=2!3S4=11!+22!+2!3(3+42)S4=11!+2![ 2+3(3+42) ]|2!=1!2S4=11!+1!2[ 2+3(3+42) ]S4=1!{ 1+2[ 2+3(3+42) ] }|1!=1S4=1{ 1+2[ 2+3(3+42=41+42=4(4+1)1=451) ] }S4=1{ 1+2[ 2+3(451) ] }S4=1[ 1+2( 2+3453 ) ]S4=1[ 1+2( 3451 ) ]S4=1( 1+23452 )S4=1( 23451 )S4=123451S4=5!111!+22!+33!+44!=5!1

 

Sn=11!+22!+...+nn!Sn=(n+1)!1

 

laugh

 Aug 10, 2016
edited by heureka  Aug 10, 2016
 #3
avatar+26396 
+5
Best Answer

Find a closed form for

S_n=1*1!+2*2!+...+n*n!.

for integers n>=1. Your response should have a factorial.

 

n=(n+1)1nn!=[ (n+1)1 ]n!nn!=(n+1)n!n!nn!=(n+1)!n!

 

nnn!=(n+1)!n!111!=2!1!222!=3!2!333!=4!3!444!=5!4!555!=6!5!nnn!=(n+1)!n!Σ11!+22!+...+nn!=(n+1)!1!

 

laugh

heureka Aug 11, 2016
 #4
avatar+33654 
+5

Or as follows:

 

sum

.

 Aug 11, 2016

2 Online Users

avatar