Find a closed form for
S_n=1*1!+2*2!+...+n*n!.
for integers n>=1. Your response should have a factorial.
Find a closed form for
S_n=1*1!+2*2!+...+n*n!.
for integers n>=1. Your response should have a factorial.
n=(n+1)−1n⋅n!=[ (n+1)−1 ]⋅n!n⋅n!=(n+1)⋅n!−n!n⋅n!=(n+1)!−n!
nn⋅n!=(n+1)!−n!11∗1!=⧸2!−1!22∗2!=⧸3!−⧸2!33∗3!=⧸4!−⧸3!44∗4!=⧸5!−⧸4!55∗5!=⧸6!−⧸5!………nn⋅n!=(n+1)!−⧸n!Σ1∗1!+2∗2!+...+n∗n!=(n+1)!−1!
Find a closed form for
S_n=1*1!+2*2!+...+n*n!.
for integers n>=1. Your response should have a factorial.
(1!+2 2!+...+n n!) = sum_(k=1)^n k k! = (n+1)!-1
Find a closed form for
S_n=1*1!+2*2!+...+n*n!.
for integers n>=1.
Your response should have a factorial.
Example for n=4:
S4=1∗1!+2∗2!+3∗3!+4∗4!|4!=3!∗4S4=1∗1!+2∗2!+3∗3!+4∗3!∗4S4=1∗1!+2∗2!+3!∗(3+4∗4)S4=1∗1!+2∗2!+3!∗(3+42)|3!=2!∗3S4=1∗1!+2∗2!+2!∗3∗(3+42)S4=1∗1!+2!∗[ 2+3∗(3+42) ]|2!=1!∗2S4=1∗1!+1!∗2∗[ 2+3∗(3+42) ]S4=1!∗{ 1+2∗[ 2+3∗(3+42) ] }|1!=1S4=1∗{ 1+2∗[ 2+3∗(3+42⏟=4−1+42⏟=4∗(4+1)−1⏟=4∗5−1) ] }S4=1∗{ 1+2∗[ 2+3∗(4∗5−1) ] }S4=1∗[ 1+2∗( 2+3∗4∗5−3 ) ]S4=1∗[ 1+2∗( 3∗4∗5−1 ) ]S4=1∗( 1+2∗3∗4∗5−2 )S4=1∗( 2∗3∗4∗5−1 )S4=1∗2∗3∗4∗5−1S4=5!−11∗1!+2∗2!+3∗3!+4∗4!=5!−1
Sn=1∗1!+2∗2!+...+n∗n!Sn=(n+1)!−1
Find a closed form for
S_n=1*1!+2*2!+...+n*n!.
for integers n>=1. Your response should have a factorial.
n=(n+1)−1n⋅n!=[ (n+1)−1 ]⋅n!n⋅n!=(n+1)⋅n!−n!n⋅n!=(n+1)!−n!
nn⋅n!=(n+1)!−n!11∗1!=⧸2!−1!22∗2!=⧸3!−⧸2!33∗3!=⧸4!−⧸3!44∗4!=⧸5!−⧸4!55∗5!=⧸6!−⧸5!………nn⋅n!=(n+1)!−⧸n!Σ1∗1!+2∗2!+...+n∗n!=(n+1)!−1!