Express the value of the inverse hyperbolic function in terms of natural logarithms:
sech-1(12/13)
??? not sure how to go about this...
Express the value of the inverse hyperbolic function in terms of natural logarithms:
sech-1(12/13)
see: http://mathworld.wolfram.com/InverseHyperbolicSecant.html
sech−1(1213)=ln(1+√1−(1213)21213)=ln(1+√1−0.9230769230820.92307692308)=ln(1+0.384615384620.92307692308)=ln(1.384615384620.92307692308)=ln(1.5)sech−1(1213)=0.40546510811
Express the value of the inverse hyperbolic function in terms of natural logarithms:
sech-1(12/13)
see: http://mathworld.wolfram.com/InverseHyperbolicSecant.html
sech−1(1213)=ln(1+√1−(1213)21213)=ln(1+√1−0.9230769230820.92307692308)=ln(1+0.384615384620.92307692308)=ln(1.384615384620.92307692308)=ln(1.5)sech−1(1213)=0.40546510811