Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3605
2
avatar

estimate the area under the curve y(x) = ln(x) from x=1 to x=2

 Sep 22, 2015
 #1
avatar+130466 
+5

Have a look at the graph here.........https://www.desmos.com/calculator/wk4fnvhslz

 

The  area bounded by x= 1, x = 2 and the x axis   is almost a triangle  with a base of 1 and a height of  about 7/ 10

 

So the area [ estimated] is about (1/2)(1)(7/10)  = 7/20  = 0.35 sq units

 

BTW ....The actual value is about 0.38629 sq units

 

 

 

cool cool cool

 Sep 22, 2015
 #2
avatar+26396 
0

estimate the area under the curve y(x) = ln(x) from x=1 to x=2

 

 x=2x=1ln(x) dx= ? 

 

Integration by parts  uv=uvuv u=1v=ln(x)u=xv=1x1ln(x) dx=xln(x)x1x dx=xln(x) dx1ln(x) dx=xln(x)xx=2x=1ln(x) dx=[xln(x)x]21=2ln(2)2[1ln(1)1]|ln(1)=0=2ln(2)2(1)=2ln(2)2+1=2ln(2)1x=2x=1ln(x) dx=0.38629436112

 

The area under the curve y(x) = ln(x) from x=1 to x=2 is 0.38629436112

 

laugh

 Sep 22, 2015
edited by heureka  Sep 22, 2015

2 Online Users