e^x=2 what is x
\boxed{e^x = \ a^ { \dfrac{x}{\ln{(a)}} } = 2^ { \dfrac{x}{\ln{(2)}} }} \\ \\ e^x=2\\\\ 2^ { \textcolor[rgb]{1,0,0}{\dfrac{x}{\ln{(2)}} } } } = 2^\textcolor[rgb]{1,0,0}{1} }\\\\ \textcolor[rgb]{1,0,0}{\dfrac{x}{\ln{(2)}} } } = \textcolor[rgb]{1,0,0}{1} \\\\ x=\ln{(2)}
e^x=2 what is x ???
Take the ln of both sides
lnex = ln2 and by log property, we can write
x lne = ln2 and lne = 1 ....so....
x = ln 2
e^x=2 what is x
\boxed{e^x = \ a^ { \dfrac{x}{\ln{(a)}} } = 2^ { \dfrac{x}{\ln{(2)}} }} \\ \\ e^x=2\\\\ 2^ { \textcolor[rgb]{1,0,0}{\dfrac{x}{\ln{(2)}} } } } = 2^\textcolor[rgb]{1,0,0}{1} }\\\\ \textcolor[rgb]{1,0,0}{\dfrac{x}{\ln{(2)}} } } = \textcolor[rgb]{1,0,0}{1} \\\\ x=\ln{(2)}