If z2+z+1=0, find z49+z50+z51+z52+z53.
Hello Guest!
z2+z+1=0z=−12±√14−1z=−12±√−34z=−12±12√3⋅iz=−12±sin(π3)⋅i
!
IDK if this is the best way...but we can first simplify it like this:
z49 + z50 + z51 + z52 + z53
Factor z49 out of the first three terms and z51 out of the last two terms
= z49(1 + z + z2) + z51(z + z2)
Since z2 + z + 1 = 0, 1 + z + z2 = 0 and z + z2 = -1
= z49( 0 ) + z51( -1 )
= -z51
Now by the quadratic formula, z = −1±√12−4(1)(1)2(1) = −1±√−32 = −12±√32i
Let's pick z = −12+√32i (If we picked z = −12−√32i we would get the same answer)
Now let's re-express z to be in the form r(cosθ+isinθ) so that we can use DeMoivre's Theorem.
By the Pythagorean Theorem,
r2 = (−12)2+(√32)2 = 1 so taking the positive sqrt, we get r = 1
An angle which has a cos of −12 and a sin of √32 is 2π3, so let θ = 2π3
And so...
z = 1(cos(2π3)+isin(2π3)) (we can check in a calculator that this does equal −12+√32i )
Then by DeMoivre's Theorem,
z51 = (1)51(cos(51⋅2π3)+isin(51⋅2π3)) z51 = (1)51((1)+i(0)) z51 = (1)51 z51 = 1
And so...
−z51 = −1
If z2+z+1=0, find
z49+z50+z51+z52+z53.
1)
z49+z50+z51+z52+z53=(z49+z50+z51)+z52+z53=z49(1+z+z2)+z52+z53|z2+z+1=0=z49⋅0+z52+z53=z52+z53
2)
z49+z50+z51+z52+z53=z49+(z50+z51+z52)+z53=z49+z50(1+z+z2)+z53|z2+z+1=0=z49+z50⋅0+z53=z49+z53
z52+z53=z49+z53z52=z49|:z49z52z49=1z52−49=1z3=1
z49+z50+z51+z52+z53=z49+z53=z3⋅16+1+z3⋅17+2=z3⋅16z+z3⋅17z2=(z3)16z+(z3)17z2|z3=1=116z+117z2=z+z2z2+z+1=0z2+z=−1z49+z50+z51+z52+z53=−1
Lets see
z2+z+1=0 z=−1±√1−42z=−1±√−32z2=1+−3∓2√−34z2=−2∓2√−34z2=−1∓√−32z2=ˉz
z3=z2∗z=ˉz∗z=14−−34=1soz3n=1where n is a positive integersoz48=z51=1
z49=zz50=ˉzz51=1z52=zz53=ˉz Add them together and get1+2(z+ˉz)=1+2(−12+−12)=1+2(−1)=1−2=−1
LaTex:
z^2 + z + 1 = 0\\~\\
z=\frac{-1\pm \sqrt{1-4}}{2}\\
z=\frac{-1\pm \sqrt{-3}}{2}\\
z^2=\frac{1+-3\mp2\sqrt{-3}}{4}\\
z^2=\frac{-2\mp2\sqrt{-3}}{4}\\
z^2=\frac{-1\mp\sqrt{-3}}{2}\\
z^2=\bar z
z^3=z^2*z=\bar z*z=\frac{1}{4}-\frac{-3}{4}=1\\
so\\
z^{3n}=1\qquad \text{where n is a positive integer}
so\\
z^{48}=z^{51}=1
z^{49}=z\\
z^{50}=\bar z\\
z^{51}=1\\
z^{52}=z\\
z^{53}=\bar z\\~\\
\text{Add them together and get}\\
1+2(z+\bar z)\\
=1+2(\frac{-1}{2}+\frac{-1}{2})\\
=1+2(-1)\\
=1-2\\
=-1