Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
904
6
avatar

If z2+z+1=0, find z49+z50+z51+z52+z53.

 Nov 21, 2020
 #1
avatar+15069 
+2

If z2+z+1=0,  find  z49+z50+z51+z52+z53.

 

Hello Guest!

 

z2+z+1=0z=12±141z=12±34z=12±123iz=12±sin(π3)i

laugh  !

 Nov 21, 2020
 #2
avatar+9488 
+5

IDK if this is the best way...but we can first simplify it like this:

 

z49 + z50 + z51 + z52 + z53

                                                        Factor  z49  out of the first three terms and  z51 out of the last two terms

=  z49(1 + z + z2)  +  z51(z + z2)

                                                        Since  z2 + z + 1 = 0,   1 + z + z2 =  0   and   z + z2  =  -1

=  z49( 0 )  +  z51( -1 )

 

=  -z51

 

Now by the quadratic formula,  z = 1±124(1)(1)2(1) = 1±32 = 12±32i

 

Let's pick  z = 12+32i     (If we picked  z = 1232i   we would get the same answer)

 

Now let's re-express  z  to be in the form  r(cosθ+isinθ)  so that we can use DeMoivre's Theorem.

 

By the Pythagorean Theorem,

 

r2 = (12)2+(32)2 = 1   so taking the positive sqrt, we get     r = 1

 

An angle which has a cos of  12  and a sin of  32  is  2π3,  so let  θ = 2π3

 

And so...

 

z = 1(cos(2π3)+isin(2π3))          (we can check in a calculator that this does equal 12+32i )

 

Then by DeMoivre's Theorem,

 

z51 = (1)51(cos(512π3)+isin(512π3)) z51 = (1)51((1)+i(0)) z51 = (1)51 z51 = 1

 

And so...

 

z51 = 1

 

Check 

 Nov 21, 2020
edited by hectictar  Nov 21, 2020
 #3
avatar+26397 
+8

If z2+z+1=0, find
z49+z50+z51+z52+z53.

 

1)

z49+z50+z51+z52+z53=(z49+z50+z51)+z52+z53=z49(1+z+z2)+z52+z53|z2+z+1=0=z490+z52+z53=z52+z53

 

2)

z49+z50+z51+z52+z53=z49+(z50+z51+z52)+z53=z49+z50(1+z+z2)+z53|z2+z+1=0=z49+z500+z53=z49+z53

 

z52+z53=z49+z53z52=z49|:z49z52z49=1z5249=1z3=1

 

z49+z50+z51+z52+z53=z49+z53=z316+1+z317+2=z316z+z317z2=(z3)16z+(z3)17z2|z3=1=116z+117z2=z+z2z2+z+1=0z2+z=1z49+z50+z51+z52+z53=1

 

laugh

 Nov 21, 2020
 #4
avatar+118703 
+5

Lets see

 

z2+z+1=0 z=1±142z=1±32z2=1+3234z2=2234z2=132z2=ˉz

 

z3=z2z=ˉzz=1434=1soz3n=1where n is a positive integersoz48=z51=1

 

z49=zz50=ˉzz51=1z52=zz53=ˉz Add them together and get1+2(z+ˉz)=1+2(12+12)=1+2(1)=12=1

 

 

 

LaTex:

z^2 + z + 1 = 0\\~\\
z=\frac{-1\pm \sqrt{1-4}}{2}\\
z=\frac{-1\pm \sqrt{-3}}{2}\\
z^2=\frac{1+-3\mp2\sqrt{-3}}{4}\\
z^2=\frac{-2\mp2\sqrt{-3}}{4}\\
z^2=\frac{-1\mp\sqrt{-3}}{2}\\
z^2=\bar z

 

z^3=z^2*z=\bar z*z=\frac{1}{4}-\frac{-3}{4}=1\\
so\\
z^{3n}=1\qquad \text{where n is a positive integer}
so\\
z^{48}=z^{51}=1

 

z^{49}=z\\
z^{50}=\bar z\\
z^{51}=1\\
z^{52}=z\\
z^{53}=\bar z\\~\\
\text{Add them together and get}\\
1+2(z+\bar z)\\
=1+2(\frac{-1}{2}+\frac{-1}{2})\\
=1+2(-1)\\
=1-2\\
=-1

 Nov 21, 2020
 #5
avatar+118703 
+1

Sorry,

I started mine hours ago and got called away.

I did not know that Heureka and Hectictar had already answered it.

Melody  Nov 21, 2020
 #6
avatar+130477 
+1

Nice work hectictar, heureka and Melody....

 

I don't know much about these.....maybe I'll learn something  by  looking at each  solution  !!!!

 

 

cool cool cool

 Nov 21, 2020

0 Online Users