Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
2x+3y=−2
x+y=0
Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
(1)2x+3y=−2⇒y=−23x−23m1=−23b1=−23(2)x+y=0⇒y=−xm2=−1b2=0
1. Parallel ?
Parallel, if m1=m2 and b1≠b2
We have: m1≠m2−23≠−1⇒parallel no
2. The same line ?
The same line, if m1=m2 and b1=b2
We have:
m1≠m2−23≠−1⇒the same line nob1≠b2−23≠0⇒the same line no
3. Perpendicular ?
Perpendicular, if m1=−1m2
We have: m1≠−1m2−23≠−1−1⇒perpendicular no
Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
(1)2x+3y=−2⇒y=−23x−23m1=−23b1=−23(2)x+y=0⇒y=−xm2=−1b2=0
1. Parallel ?
Parallel, if m1=m2 and b1≠b2
We have: m1≠m2−23≠−1⇒parallel no
2. The same line ?
The same line, if m1=m2 and b1=b2
We have:
m1≠m2−23≠−1⇒the same line nob1≠b2−23≠0⇒the same line no
3. Perpendicular ?
Perpendicular, if m1=−1m2
We have: m1≠−1m2−23≠−1−1⇒perpendicular no