derivate (x)/(((x^2)+4)^2)
y=x(4+x2)2=x(4+x2)⋅(4+x2)
Use the general quotient rule:
y=f(x)g(x)⋅h(x)y′=y⋅[f′(x)f(x)−g′(x)g(x)−h′(x)h(x)]y′=f(x)g(x)⋅h(x)⋅[f′(x)f(x)−g′(x)g(x)−h′(x)h(x)]y′=f′(x)g(x)⋅h(x)−f(x)⋅g′(x)g2(x)⋅h(x)−f(x)⋅h′(x)g(x)⋅h2(x)y′=f′(x)⋅g(x)⋅h(x)−f(x)⋅g′(x)⋅h(x)−f(x)⋅h′(x)⋅g(x)g2(x)⋅h2(x)f(x)=xf′(x)=1g(x)=4+x2g′(x)=2xh(x)=4+x2h′(x)=2xy′=1⋅(4+x2)⋅(4+x2)−x⋅2x⋅(4+x2)−x⋅2x⋅(4+x2)(4+x2)2⋅(4+x2)2y′=(4+x2)2−2⋅[ x⋅2x⋅(4+x2) ](4+x2)4y′=(4+x2)2−4⋅x2⋅(4+x2)(4+x2)4y′=(4+x2)2(4+x2)4−4⋅x2⋅(4+x2)(4+x2)4y′=1(4+x2)2−4⋅x2(4+x2)3
Possible derivation:
d/dx(x/(x^2+4)^2)
Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = x and v = 1/(x^2+4)^2:
= (d/dx(x))/(4+x^2)^2+x (d/dx(1/(4+x^2)^2))
The derivative of x is 1:
= x (d/dx(1/(4+x^2)^2))+1/(x^2+4)^2
Using the chain rule, d/dx(1/(x^2+4)^2) = d/( du)1/u^2 ( du)/( dx), where u = x^2+4 and ( d)/( du)(1/u^2) = -2/u^3:
= 1/(4+x^2)^2+(-2 d/dx(4+x^2))/(x^2+4)^3 x
Differentiate the sum term by term:
= 1/(4+x^2)^2-(d/dx(4)+d/dx(x^2) 2 x)/(4+x^2)^3
The derivative of 4 is zero:
= 1/(4+x^2)^2-(2 x (d/dx(x^2)+0))/(4+x^2)^3
Simplify the expression:
= 1/(4+x^2)^2-(2 x (d/dx(x^2)))/(4+x^2)^3
Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x:
= 1/(4+x^2)^2-(2 x 2 x)/(4+x^2)^3
Simplify the expression:
Answer: | = -(4 x^2)/(4+x^2)^3+1/(4+x^2)^2
derivate (x)/(((x^2)+4)^2)
y=x(4+x2)2=x(4+x2)⋅(4+x2)
Use the general quotient rule:
y=f(x)g(x)⋅h(x)y′=y⋅[f′(x)f(x)−g′(x)g(x)−h′(x)h(x)]y′=f(x)g(x)⋅h(x)⋅[f′(x)f(x)−g′(x)g(x)−h′(x)h(x)]y′=f′(x)g(x)⋅h(x)−f(x)⋅g′(x)g2(x)⋅h(x)−f(x)⋅h′(x)g(x)⋅h2(x)y′=f′(x)⋅g(x)⋅h(x)−f(x)⋅g′(x)⋅h(x)−f(x)⋅h′(x)⋅g(x)g2(x)⋅h2(x)f(x)=xf′(x)=1g(x)=4+x2g′(x)=2xh(x)=4+x2h′(x)=2xy′=1⋅(4+x2)⋅(4+x2)−x⋅2x⋅(4+x2)−x⋅2x⋅(4+x2)(4+x2)2⋅(4+x2)2y′=(4+x2)2−2⋅[ x⋅2x⋅(4+x2) ](4+x2)4y′=(4+x2)2−4⋅x2⋅(4+x2)(4+x2)4y′=(4+x2)2(4+x2)4−4⋅x2⋅(4+x2)(4+x2)4y′=1(4+x2)2−4⋅x2(4+x2)3