Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
706
2
avatar

derivate (x)/(((x^2)+4)^2)

 Dec 16, 2015

Best Answer 

 #2
avatar+26396 
+15

derivate (x)/(((x^2)+4)^2)

 

y=x(4+x2)2=x(4+x2)(4+x2)

 

 

Use the general quotient rule:

y=f(x)g(x)h(x)y=y[f(x)f(x)g(x)g(x)h(x)h(x)]y=f(x)g(x)h(x)[f(x)f(x)g(x)g(x)h(x)h(x)]y=f(x)g(x)h(x)f(x)g(x)g2(x)h(x)f(x)h(x)g(x)h2(x)y=f(x)g(x)h(x)f(x)g(x)h(x)f(x)h(x)g(x)g2(x)h2(x)f(x)=xf(x)=1g(x)=4+x2g(x)=2xh(x)=4+x2h(x)=2xy=1(4+x2)(4+x2)x2x(4+x2)x2x(4+x2)(4+x2)2(4+x2)2y=(4+x2)22[ x2x(4+x2) ](4+x2)4y=(4+x2)24x2(4+x2)(4+x2)4y=(4+x2)2(4+x2)44x2(4+x2)(4+x2)4y=1(4+x2)24x2(4+x2)3

 

laugh

 Dec 16, 2015
 #1
avatar
+5

Possible derivation:
d/dx(x/(x^2+4)^2)
Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = x and v = 1/(x^2+4)^2:
  =  (d/dx(x))/(4+x^2)^2+x (d/dx(1/(4+x^2)^2))
The derivative of x is 1:
  =  x (d/dx(1/(4+x^2)^2))+1/(x^2+4)^2
Using the chain rule, d/dx(1/(x^2+4)^2) =  d/( du)1/u^2 ( du)/( dx), where u = x^2+4 and ( d)/( du)(1/u^2) = -2/u^3:
  =  1/(4+x^2)^2+(-2 d/dx(4+x^2))/(x^2+4)^3 x
Differentiate the sum term by term:
  =  1/(4+x^2)^2-(d/dx(4)+d/dx(x^2) 2 x)/(4+x^2)^3
The derivative of 4 is zero:
  =  1/(4+x^2)^2-(2 x (d/dx(x^2)+0))/(4+x^2)^3
Simplify the expression:
  =  1/(4+x^2)^2-(2 x (d/dx(x^2)))/(4+x^2)^3
Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x:
  =  1/(4+x^2)^2-(2 x 2 x)/(4+x^2)^3
Simplify the expression:
Answer: | =  -(4 x^2)/(4+x^2)^3+1/(4+x^2)^2
 

 Dec 16, 2015
 #2
avatar+26396 
+15
Best Answer

derivate (x)/(((x^2)+4)^2)

 

y=x(4+x2)2=x(4+x2)(4+x2)

 

 

Use the general quotient rule:

y=f(x)g(x)h(x)y=y[f(x)f(x)g(x)g(x)h(x)h(x)]y=f(x)g(x)h(x)[f(x)f(x)g(x)g(x)h(x)h(x)]y=f(x)g(x)h(x)f(x)g(x)g2(x)h(x)f(x)h(x)g(x)h2(x)y=f(x)g(x)h(x)f(x)g(x)h(x)f(x)h(x)g(x)g2(x)h2(x)f(x)=xf(x)=1g(x)=4+x2g(x)=2xh(x)=4+x2h(x)=2xy=1(4+x2)(4+x2)x2x(4+x2)x2x(4+x2)(4+x2)2(4+x2)2y=(4+x2)22[ x2x(4+x2) ](4+x2)4y=(4+x2)24x2(4+x2)(4+x2)4y=(4+x2)2(4+x2)44x2(4+x2)(4+x2)4y=1(4+x2)24x2(4+x2)3

 

laugh

heureka Dec 16, 2015

1 Online Users

avatar