solve using Cramer's rule
x-2y+3z=6
2x+y-z=-3
x+y+z=6
1⋅x−2⋅y+3⋅z=62⋅x+1⋅y−1⋅z=−31⋅x+1⋅y+1⋅z=6Determinant denominator=|1−2321−1111|=1⋅1⋅1+2⋅1⋅3+1⋅(−2)⋅(−1)−1⋅1⋅3−2⋅(−2)⋅1−1⋅1⋅(−1)=1+6+2−3+4+1=11
x=|6−23−31−1611|11=6⋅1⋅1+(−3)⋅1⋅3+6⋅(−2)⋅(−1)−6⋅1⋅3−(−3)⋅(−2)⋅1−6⋅1⋅(−1)11=6−9+12−18−6+611x=−911
y=|1632−3−1161|11=1⋅(−3)⋅1+2⋅6⋅3+1⋅6⋅(−1)−1⋅(−3)⋅3−2⋅6⋅1−1⋅6⋅(−1)11=−3+36−6+9−12+611y=3011
z=|1−2621−3116|11=1⋅1⋅6+2⋅1⋅6+1⋅(−2)⋅(−3)−1⋅1⋅6−2⋅(−2)⋅6−1⋅1⋅(−3)11=6+12+6−6+24+311z=4511
Check:
1⋅(−911)−2⋅3011+3⋅4511=62⋅(−911)+1⋅3011−1⋅4511=−31⋅(−911)+1⋅3011+1⋅4511=6
Solve the following system: WHOSE IDEA WAS IT TO USE CRAMER'S RULE?
{x-2 y+3 z = 6
2 x+y-z = -3
x+y+z = 6
Express the system in matrix form:
(1 | -2 | 3
2 | 1 | -1
1 | 1 | 1)(x
y
z) = (6
-3
6)
Solve the system with Cramer's rule:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1
Use cofactor expansion about the 1^st row. 1 | -2 | 3
2 | 1 | -1
1 | 1 | 1 = 1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1
2 | -1
1 | 1 = 2×1-(-1) = 3:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1)
2 | 1
1 | 1 = 2×1-1×1 = 1:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(1 | -1
1 | 1+2×3+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(1 | -1
1 | 1+2×3+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(1 | -1
1 | 1+2×3+3)
1 | -1
1 | 1 = 1×1-(-1) = 2:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(2+2×3+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(2+2×3+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(2+2×3+3)
2×3 = 6:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(2+6+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(2+6+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(2+6+3)
2+6+3 = 11:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1 = 6 1 | -1
1 | 1+3 -3 | 1
6 | 1+2 -3 | -1
6 | 1:
x = 6 1 | -1
1 | 1+3 -3 | 1
6 | 1+2 -3 | -1
6 | 1/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
1 | -1
1 | 1 = 1×1-(-1) = 2:
x = (3 -3 | 1
6 | 1+2 -3 | -1
6 | 1+2 6)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | -1
6 | 1 = -(-6)-3×1 = 3:
x = (3 -3 | 1
6 | 1+3 2+6 2)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | 1
6 | 1 = -3×1-1×6 = -9:
x = (6×2+2×3+3×-9)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
6×2 = 12:
x = (12+2×3-9×3)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2×3 = 6:
x = (12+6-9×3)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3 (-9) = -27:
x = (12+6+-27)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
12+6-27 = -9:
x = -9/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1 = -3 | -1
6 | 1-6 2 | -1
1 | 1+3 2 | -3
1 | 6:
x = (-9)/11 and y = -3 | -1
6 | 1-6 2 | -1
1 | 1+3 2 | -3
1 | 6/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2 | -1
1 | 1 = 2×1-(-1) = 3:
x = (-9)/11 and y = (-3 | -1
6 | 1-63+3 2 | -3
1 | 6)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2 | -3
1 | 6 = 2×6--3×1 = 15:
x = (-9)/11 and y = (-3 | -1
6 | 1-6×3+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | -1
6 | 1 = -(-6)-3×1 = 3:
x = (-9)/11 and y = (3-6×3+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-6×3 = -18:
x = (-9)/11 and y = (3+-18+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3×15 = 45:
x = (-9)/11 and y = (3-18+45)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3-18+45 = 30:
x = (-9)/11 and y = 30/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6 = 1 | -3
1 | 6+2 2 | -3
1 | 6+6 2 | 1
1 | 1:
x = (-9)/11 and y = 30/11 and z = 1 | -3
1 | 6+2 2 | -3
1 | 6+6 2 | 1
1 | 1/11
2 | -3
1 | 6 = 2×6--3×1 = 15:
x = (-9)/11 and y = 30/11 and z = (1 | -3
1 | 6+2×15+6 2 | 1
1 | 1)/11
2 | 1
1 | 1 = 2×1-1×1 = 1:
x = (-9)/11 and y = 30/11 and z = (1 | -3
1 | 6+2×15+6)/11
1 | -3
1 | 6 = 1×6--3×1 = 9:
x = (-9)/11 and y = 30/11 and z = (9+2×15+6)/11
2×15 = 30:
x = (-9)/11 and y = 30/11 and z = (9+30+6)/11
9+30+6 = 45:
Answer: | x = (-9)/11 and y = 30/11 and z = 45/11
solve using Cramer's rule
x-2y+3z=6
2x+y-z=-3
x+y+z=6
1⋅x−2⋅y+3⋅z=62⋅x+1⋅y−1⋅z=−31⋅x+1⋅y+1⋅z=6Determinant denominator=|1−2321−1111|=1⋅1⋅1+2⋅1⋅3+1⋅(−2)⋅(−1)−1⋅1⋅3−2⋅(−2)⋅1−1⋅1⋅(−1)=1+6+2−3+4+1=11
x=|6−23−31−1611|11=6⋅1⋅1+(−3)⋅1⋅3+6⋅(−2)⋅(−1)−6⋅1⋅3−(−3)⋅(−2)⋅1−6⋅1⋅(−1)11=6−9+12−18−6+611x=−911
y=|1632−3−1161|11=1⋅(−3)⋅1+2⋅6⋅3+1⋅6⋅(−1)−1⋅(−3)⋅3−2⋅6⋅1−1⋅6⋅(−1)11=−3+36−6+9−12+611y=3011
z=|1−2621−3116|11=1⋅1⋅6+2⋅1⋅6+1⋅(−2)⋅(−3)−1⋅1⋅6−2⋅(−2)⋅6−1⋅1⋅(−3)11=6+12+6−6+24+311z=4511
Check:
1⋅(−911)−2⋅3011+3⋅4511=62⋅(−911)+1⋅3011−1⋅4511=−31⋅(−911)+1⋅3011+1⋅4511=6