Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
750
2
avatar

x-2y+3z=6 2x+y-z=-3 x+y+z=6 solve using Cramer's rule

 Dec 17, 2015

Best Answer 

 #2
avatar+26397 
+10

solve using Cramer's rule

x-2y+3z=6

2x+y-z=-3

x+y+z=6

 

1x2y+3z=62x+1y1z=31x+1y+1z=6Determinant denominator=|123211111|=111+213+1(2)(1)1132(2)111(1)=1+6+23+4+1=11

 

x=|623311611|11=611+(3)13+6(2)(1)613(3)(2)161(1)11=69+12186+611x=911

 

 

y=|163231161|11=1(3)1+263+16(1)1(3)326116(1)11=3+366+912+611y=3011

 

 

z=|126213116|11=116+216+1(2)(3)1162(2)611(3)11=6+12+66+24+311z=4511

 

 

Check:

1(911)23011+34511=62(911)+1301114511=31(911)+13011+14511=6

 

laugh

 Dec 17, 2015
edited by heureka  Dec 17, 2015
edited by heureka  Dec 17, 2015
edited by heureka  Dec 17, 2015
 #1
avatar
+5

Solve the following system: WHOSE IDEA WAS IT TO USE CRAMER'S RULE?
{x-2 y+3 z = 6
2 x+y-z = -3
x+y+z = 6
Express the system in matrix form:
(1 | -2 | 3
2 | 1 | -1
1 | 1 | 1)(x
y
z) = (6
-3
6)
Solve the system with Cramer's rule:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/1 | -2 | 3
2 | 1 | -1
1 | 1 | 1
Use cofactor expansion about the 1^st row. 1 | -2 | 3
2 | 1 | -1
1 | 1 | 1  =  1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/1 | -1
1 | 1+2 2 | -1
1 | 1+3 2 | 1
1 | 1
2 | -1
1 | 1  =  2×1-(-1)  =  3:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(1 | -1
1 | 1+2×3+3 2 | 1
1 | 1)
2 | 1
1 | 1  =  2×1-1×1  =  1:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(1 | -1
1 | 1+2×3+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(1 | -1
1 | 1+2×3+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(1 | -1
1 | 1+2×3+3)
1 | -1
1 | 1  =  1×1-(-1)  =  2:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(2+2×3+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(2+2×3+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(2+2×3+3)
2×3 = 6:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/(2+6+3) and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/(2+6+3) and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/(2+6+3)
2+6+3 = 11:
x = 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 6 | -2 | 3
-3 | 1 | -1
6 | 1 | 1  =  6 1 | -1
1 | 1+3 -3 | 1
6 | 1+2 -3 | -1
6 | 1:
x = 6 1 | -1
1 | 1+3 -3 | 1
6 | 1+2 -3 | -1
6 | 1/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
1 | -1
1 | 1  =  1×1-(-1)  =  2:
x = (3 -3 | 1
6 | 1+2 -3 | -1
6 | 1+2 6)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | -1
6 | 1  =  -(-6)-3×1  =  3:
x = (3 -3 | 1
6 | 1+3 2+6 2)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | 1
6 | 1  =  -3×1-1×6  =  -9:
x = (6×2+2×3+3×-9)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
6×2 = 12:
x = (12+2×3-9×3)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2×3 = 6:
x = (12+6-9×3)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3 (-9) = -27:
x = (12+6+-27)/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
12+6-27 = -9:
x = -9/11 and y = 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 1 | 6 | 3
2 | -3 | -1
1 | 6 | 1  =  -3 | -1
6 | 1-6 2 | -1
1 | 1+3 2 | -3
1 | 6:
x = (-9)/11 and y = -3 | -1
6 | 1-6 2 | -1
1 | 1+3 2 | -3
1 | 6/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2 | -1
1 | 1  =  2×1-(-1)  =  3:
x = (-9)/11 and y = (-3 | -1
6 | 1-63+3 2 | -3
1 | 6)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
2 | -3
1 | 6  =  2×6--3×1  =  15:
x = (-9)/11 and y = (-3 | -1
6 | 1-6×3+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-3 | -1
6 | 1  =  -(-6)-3×1  =  3:
x = (-9)/11 and y = (3-6×3+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
-6×3 = -18:
x = (-9)/11 and y = (3+-18+3×15)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3×15 = 45:
x = (-9)/11 and y = (3-18+45)/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
3-18+45 = 30:
x = (-9)/11 and y = 30/11 and z = 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6/11
Use cofactor expansion about the 1^st row. 1 | -2 | 6
2 | 1 | -3
1 | 1 | 6  =  1 | -3
1 | 6+2 2 | -3
1 | 6+6 2 | 1
1 | 1:
x = (-9)/11 and y = 30/11 and z = 1 | -3
1 | 6+2 2 | -3
1 | 6+6 2 | 1
1 | 1/11
2 | -3
1 | 6  =  2×6--3×1  =  15:
x = (-9)/11 and y = 30/11 and z = (1 | -3
1 | 6+2×15+6 2 | 1
1 | 1)/11
2 | 1
1 | 1  =  2×1-1×1  =  1:
x = (-9)/11 and y = 30/11 and z = (1 | -3
1 | 6+2×15+6)/11
1 | -3
1 | 6  =  1×6--3×1  =  9:
x = (-9)/11 and y = 30/11 and z = (9+2×15+6)/11
2×15 = 30:
x = (-9)/11 and y = 30/11 and z = (9+30+6)/11
9+30+6 = 45:
Answer: | x = (-9)/11   and y = 30/11   and z = 45/11
 

 Dec 17, 2015
 #2
avatar+26397 
+10
Best Answer

solve using Cramer's rule

x-2y+3z=6

2x+y-z=-3

x+y+z=6

 

1x2y+3z=62x+1y1z=31x+1y+1z=6Determinant denominator=|123211111|=111+213+1(2)(1)1132(2)111(1)=1+6+23+4+1=11

 

x=|623311611|11=611+(3)13+6(2)(1)613(3)(2)161(1)11=69+12186+611x=911

 

 

y=|163231161|11=1(3)1+263+16(1)1(3)326116(1)11=3+366+912+611y=3011

 

 

z=|126213116|11=116+216+1(2)(3)1162(2)611(3)11=6+12+66+24+311z=4511

 

 

Check:

1(911)23011+34511=62(911)+1301114511=31(911)+13011+14511=6

 

laugh

heureka Dec 17, 2015
edited by heureka  Dec 17, 2015
edited by heureka  Dec 17, 2015
edited by heureka  Dec 17, 2015

3 Online Users