The powers of i repeat in blocks of four:
i,i2,i3,i4=1,−1,−i,i
Therefore, the sum telescopes:
i+2i2+3i3+4i4+⋯+64i64=i+2(−1)+3(−i)+4i+⋯+64i=(i−2i+3i−4i+⋯+64i)+(2−3+4−⋯+64)=0+(2+64)⋅32=496.
As of what the first guest, i has four different stages. These stages are i, -1, -i, 1.Through these stages, we can see that i + 2i2 + 3i3 + 4i4 is equal to 2 - 2i. As we continue to 8i8, the answer is 4 - 4i. We can see a pattern, which is that for each four stages, we get 2 - 2i, no matter what. 64 / 4 is 16, so therefore the answer is 16 * (2 - 2i), or 32 - 32i.
{( 0 +1i ) , ( -2 ) , ( 0 -3i ) , ( 4 ) , ( 0 +5i ) , ( -6 ) , ( 0 -7i ) , ( 8 ) , ( 0 +9i ) , ( -10 ) , ( 0 -11i ) , ( 12 ) , ( 0 +13i ) , ( -14 ) , ( 0 -15i ) , ( 16 ) , ( 0 +17i ) , ( -18 ) , ( 0 -19i ) , ( 20 ) , ( 0 +21i ) , ( -22 ) , ( 0 -23i ) , ( 24 ) , ( 0 +25i ) , ( -26 ) , ( 0 -27i ) , ( 28 ) , ( 0 +29i ) , ( -30 ) , ( 0 -31i ) , ( 32 ) , ( 0 +33i ) , ( -34 ) , ( 0 -35i ) , ( 36 ) , ( 0 +37i ) , ( -38 ) , ( 0 -39i ) , ( 40 ) , ( 0 +41i ) , ( -42 ) , ( 0 -43i ) , ( 44 ) , ( 0 +45i ) , ( -46 ) , ( 0 -47i ) , ( 48 ) , ( 0 +49i ) , ( -50 ) , ( 0 -51i ) , ( 52 ) , ( 0 +53i ) , ( -54 ) , ( 0 -55i ) , ( 56 ) , ( 0 +57i ) , ( -58 ) , ( 0 -59i ) , ( 60 ) , ( 0 +61i ) , ( -62 ) , ( 0 -63i ) , ( 64 ) } = 32 - 32i