cos^2t*sint-sint = 0 t = ?
cos2(t)⋅sin(t)−sin(t)=0 cos2(t)⋅sin(t)−sin(t)=0| cos2(t)=1−sin2(t) [1−sin2(t)]⋅sin(t)−sin(t)=0sin(t)−sin3(t)−sin(t)=0−sin3(t)=0sin3(t)=0|3√sin(t)=3√0sin(t)=0 sin(t)=0t=arcsin(0)t=0±k⋅360\ensurement∘ sin(t)=sin(180\ensurement∘−t)=0180\ensurement∘−t=arcsin(0)180\ensurement∘−t=0t=180\ensurement∘±k⋅360\ensurement∘
So~ t=0±k⋅180\ensurement∘k=0,1,2⋯∈N
cos2(t)·sin(t) - sin(t) = 0
Factor out sin(t):
sin(t)[cos2(t) - 1] = 0
Factor again:
sin(t)[cos(t) + 1][cos(t) - 1] = 0
So either:
sin(t) = 0 or cos(t) + 1 = 0 or cos(t) - 1 = 0
sin(t) = 0 or cos(t) = -1 or cos(t) = 1
Therefore:
sin(t) = 0 ---> t = 0° (plus multiples of 360°) or t = 180° (plus multiples of 360°)
cos(t) = -1 ---> t = 0° (plus multiples of 360°)
cos(t) = 1 ---> t = 180° (plus multiples of 360°)
So: t = 0° (plus multiples of 360°) or t = 180° (plus multiples of 360°)
cos^2t*sint-sint = 0 t = ?
cos2(t)⋅sin(t)−sin(t)=0 cos2(t)⋅sin(t)−sin(t)=0| cos2(t)=1−sin2(t) [1−sin2(t)]⋅sin(t)−sin(t)=0sin(t)−sin3(t)−sin(t)=0−sin3(t)=0sin3(t)=0|3√sin(t)=3√0sin(t)=0 sin(t)=0t=arcsin(0)t=0±k⋅360\ensurement∘ sin(t)=sin(180\ensurement∘−t)=0180\ensurement∘−t=arcsin(0)180\ensurement∘−t=0t=180\ensurement∘±k⋅360\ensurement∘
So~ t=0±k⋅180\ensurement∘k=0,1,2⋯∈N