Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1001
4
avatar

Hi, if Cos 12° =h, find Sin12°in terms of h...subsequently, write down the value of Cot 12°...please help

 Jun 2, 2019
 #1
avatar+343 
0

cos2x+sin2x=1<=>h2+sin212=1<=>sin12=1h2=(1h)(1+h)

 

cot12=cos12sin12=h(1h)(1+h)

.
 Jun 2, 2019
edited by Dimitristhym  Jun 2, 2019
edited by Dimitristhym  Jun 2, 2019
 #2
avatar+9488 
+3

By the Pythagorean Identity,

 

sin2(12)+cos2(12) = 1

                                                      We are given that   cos(12°) = h   so we can substitute  h  in for  cos(12°)

sin2(12)+h2 = 1

                                                      Subtract  h2  from both sides of the equation.

sin2(12) = 1h2

                                                      Because  12°  is in Quadrant I,  sin(12°)  is positive. So take positive sqrt of both sides.

sin(12) = 1h2

 

By definition of cotangent,

 

cot(12) = cos(12)sin(12)

                                          Substitute  h  in for  cos(12°)  and substitute  √[ 1 - h2 ]  in for  sin(12°)

cot(12) = h1h2_

 Jun 2, 2019
 #3
avatar
0

Hectictar,

 

thank you very much!!..may I ask one more thing please, how would we approach finding Sin78?..Thank you very much for your time..

Guest Jun 3, 2019
 #4
avatar+9488 
+1

Note that there is a rule which says  sin( 90° - θ )  =  cos( θ )  for any angle measure  θ . So...

 

sin( 78° )  =  sin( 90° - 12° )  =  cos( 12° )  =  h

hectictar  Jun 3, 2019
edited by hectictar  Jun 4, 2019

2 Online Users