a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)
i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC
ii) show that PQ||AC and that PQ=½AC
b)THEOREM:the interval joining the midpoints of two sides of a triangle is parallel to the base and half its length
Prove this theorem for any triangle by placing its vertices at A(2a,0),B(2b,2c) and C(0,0) , where a>0, and proceeding as in part (a)
a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)
i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC
→P=→A+→B2=(1−3)+(33)2=(40)2=(20)→Q=→B+→C2=(33)+(−313)2=(04)2=(02)
ii) show that PQ=½AC
¯PQ=|→P−→Q|=√(→P−→Q)⋅(→P−→Q)=√[(20)−(02)]⋅[(20)−(02)]=√(2−2)⋅(2−2)=√4+4¯PQ=√8¯AC=|→A−→C|=√(→A−→C)⋅(→A−→C)=√[(1−3)−(−31)]⋅[(1−3)−(−31)]=√(4−4)⋅(1−4)=√4⋅8¯AC=2⋅√8
¯PQ¯AC=√82⋅√8=12¯PQ=12⋅¯AC
iii) show that PQ||AC
(→P−→Q)⋅(→A−→C)=¯PQ⋅¯AC⋅cos(α)cos(α)=(→P−→Q)⋅(→A−→C)¯PQ⋅¯ACcos(α)=[(20)−(02)]⋅[(1−3)−(−31)]√8⋅2⋅√8cos(α)=(2−2)⋅(4−4)16cos(α)=1616cos(α)=1⇒α=0⇒PQ||AC
a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)
i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC
→P=→A+→B2=(1−3)+(33)2=(40)2=(20)→Q=→B+→C2=(33)+(−313)2=(04)2=(02)
ii) show that PQ=½AC
¯PQ=|→P−→Q|=√(→P−→Q)⋅(→P−→Q)=√[(20)−(02)]⋅[(20)−(02)]=√(2−2)⋅(2−2)=√4+4¯PQ=√8¯AC=|→A−→C|=√(→A−→C)⋅(→A−→C)=√[(1−3)−(−31)]⋅[(1−3)−(−31)]=√(4−4)⋅(1−4)=√4⋅8¯AC=2⋅√8
¯PQ¯AC=√82⋅√8=12¯PQ=12⋅¯AC
iii) show that PQ||AC
(→P−→Q)⋅(→A−→C)=¯PQ⋅¯AC⋅cos(α)cos(α)=(→P−→Q)⋅(→A−→C)¯PQ⋅¯ACcos(α)=[(20)−(02)]⋅[(1−3)−(−31)]√8⋅2⋅√8cos(α)=(2−2)⋅(4−4)16cos(α)=1616cos(α)=1⇒α=0⇒PQ||AC
b)THEOREM:the interval joining the midpoints of two sides of a triangle is parallel to the base and half its length
Prove this theorem for any triangle by placing its vertices at A(2a,0),B(2b,2c) and C(0,0) , where a>0, and proceeding as in part (a)
→P=→A+→B2=(2a0)+(2b2c)2=(2a+2b2c)2=(a+bc)→Q=→B+→C2=(2b2c)+(00)2=(2b2c)2=(bc)
¯PQ=|→P−→Q|=√(→P−→Q)⋅(→P−→Q)=√[(a+bc)−(bc)]⋅[(a+bc)−(bc)]=√(a0)⋅(a0)=√a2¯PQ=a¯AC=|→A−→C|=|(2a0)−(00)|=|(2a0)|¯AC=2a
(→P−→Q)⋅(→A−→C)=¯PQ⋅¯AC⋅cos(α)cos(α)=(→P−→Q)⋅(→A−→C)¯PQ⋅¯ACcos(α)=[(a+bc)−(bc)]⋅[(2a0)−(00)]a⋅2acos(α)=(a0)⋅(2a0)2a2cos(α)=2a22a2cos(α)=1⇒α=0⇒PQ||AC