Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
691
2
avatar

a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)

i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC

ii) show that PQ||AC and that PQ=½AC

 

b)THEOREM:the interval joining the midpoints of two sides of a triangle is parallel to the base and half its length

Prove this theorem for any triangle by placing its vertices at A(2a,0),B(2b,2c) and C(0,0) , where a>0, and proceeding as in part (a)

 Oct 12, 2015

Best Answer 

 #1
avatar+26396 
+50

a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)

 

i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC

P=A+B2=(13)+(33)2=(40)2=(20)Q=B+C2=(33)+(313)2=(04)2=(02)

 

ii) show that PQ=½AC

¯PQ=|PQ|=(PQ)(PQ)=[(20)(02)][(20)(02)]=(22)(22)=4+4¯PQ=8¯AC=|AC|=(AC)(AC)=[(13)(31)][(13)(31)]=(44)(14)=48¯AC=28


¯PQ¯AC=828=12¯PQ=12¯AC

 

 

iii) show that PQ||AC

(PQ)(AC)=¯PQ¯ACcos(α)cos(α)=(PQ)(AC)¯PQ¯ACcos(α)=[(20)(02)][(13)(31)]828cos(α)=(22)(44)16cos(α)=1616cos(α)=1α=0PQ||AC

laugh

 Oct 12, 2015
 #1
avatar+26396 
+50
Best Answer

a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)

 

i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC

P=A+B2=(13)+(33)2=(40)2=(20)Q=B+C2=(33)+(313)2=(04)2=(02)

 

ii) show that PQ=½AC

¯PQ=|PQ|=(PQ)(PQ)=[(20)(02)][(20)(02)]=(22)(22)=4+4¯PQ=8¯AC=|AC|=(AC)(AC)=[(13)(31)][(13)(31)]=(44)(14)=48¯AC=28


¯PQ¯AC=828=12¯PQ=12¯AC

 

 

iii) show that PQ||AC

(PQ)(AC)=¯PQ¯ACcos(α)cos(α)=(PQ)(AC)¯PQ¯ACcos(α)=[(20)(02)][(13)(31)]828cos(α)=(22)(44)16cos(α)=1616cos(α)=1α=0PQ||AC

laugh

heureka Oct 12, 2015
 #2
avatar+26396 
+50

b)THEOREM:the interval joining the midpoints of two sides of a triangle is parallel to the base and half its length

Prove this theorem for any triangle by placing its vertices at A(2a,0),B(2b,2c) and C(0,0) , where a>0, and proceeding as in part (a)

 

P=A+B2=(2a0)+(2b2c)2=(2a+2b2c)2=(a+bc)Q=B+C2=(2b2c)+(00)2=(2b2c)2=(bc)

 

¯PQ=|PQ|=(PQ)(PQ)=[(a+bc)(bc)][(a+bc)(bc)]=(a0)(a0)=a2¯PQ=a¯AC=|AC|=|(2a0)(00)|=|(2a0)|¯AC=2a

 

(PQ)(AC)=¯PQ¯ACcos(α)cos(α)=(PQ)(AC)¯PQ¯ACcos(α)=[(a+bc)(bc)][(2a0)(00)]a2acos(α)=(a0)(2a0)2a2cos(α)=2a22a2cos(α)=1α=0PQ||AC

 

laugh

 Oct 12, 2015

3 Online Users

avatar
avatar