Compute.i+i2+i3+⋯+i258+i259.
Compute.
i+i2+i3+⋯+i258+i259.
geometric series:a=ir=in=259s=i⋅(1−i259)1−is=i−i2601−i|i4m=1s=i−i4⋅651−i|i4⋅65=1s=i−11−is=−1−i1−is=−1
∑[ i^n], for n=1 to 259= -1
Compute. i+i^2+i^3+\cdots+i^{258}+i^{259}.
Compute.i+i2+i3+⋯+i258+i259i1=ii2=−1i3=−ii4=1i5=iand so the pattern continues, soi2+i4+⋯+i256=0i1+i3+⋯+i255=0so this leaves=0+i257+i258+i259=i4∗64+1+i4∗64+2+i4∗64+3=i−1−i=−1
Thanks Heureka,
I had not thought to do it as a GP :))