Processing math: 100%
 
+0  
 
0
2097
4
avatar

Compute.i+i2+i3++i258+i259.

 Jul 24, 2016

Best Answer 

 #3
avatar+26396 
+11

Compute.

i+i2+i3++i258+i259.

 

geometric series:
a=ir=in=259s=i(1i259)1is=ii2601i|i4m=1s=ii4651i|i465=1s=i11is=1i1is=1

 

laugh

 Jul 25, 2016
 #1
avatar
0

∑[ i^n], for n=1 to 259= -1

 Jul 24, 2016
 #2
avatar+118703 
+6

Compute. i+i^2+i^3+\cdots+i^{258}+i^{259}.

 

Compute.i+i2+i3++i258+i259i1=ii2=1i3=ii4=1i5=iand so the pattern continues, soi2+i4++i256=0i1+i3++i255=0so this leaves=0+i257+i258+i259=i464+1+i464+2+i464+3=i1i=1

 Jul 25, 2016
 #3
avatar+26396 
+11
Best Answer

Compute.

i+i2+i3++i258+i259.

 

geometric series:
a=ir=in=259s=i(1i259)1is=ii2601i|i4m=1s=ii4651i|i465=1s=i11is=1i1is=1

 

laugh

heureka Jul 25, 2016
 #4
avatar+118703 
+5

Thanks Heureka,

I had not thought to do it as a GP  :))

Melody  Jul 25, 2016

2 Online Users