Processing math: 100%
 
+0  
 
+1
2761
1
avatar

Compute $\binom{223}{221}$.

 Mar 12, 2015

Best Answer 

 #1
avatar+26396 
+5

$\binom{223}{221}$

\boxed{ \small{\text{$\left( \begin{array}{c}n \\k\end{array} \right) =\dfrac{n!}{k!\cdot (n-k)!} $}} }

 

(223221)=223!221!(223221)!=221!222223221!2!=2222232=111223=24753

.
 Mar 13, 2015
 #1
avatar+26396 
+5
Best Answer

$\binom{223}{221}$

\boxed{ \small{\text{$\left( \begin{array}{c}n \\k\end{array} \right) =\dfrac{n!}{k!\cdot (n-k)!} $}} }

 

(223221)=223!221!(223221)!=221!222223221!2!=2222232=111223=24753

heureka Mar 13, 2015

1 Online Users