(a + a^2 + a^3)^4=a^12+4 a^11+10 a^10+16 a^9+19 a^8+16 a^7+10 a^6+4 a^5+a^4
In the expanded part, the term "19a^8", how is the coefficient 19 arrived at? Thanks for any help.
(a + a^2 + a^3)^4=a^12+4 a^11+10 a^10+16 a^9+19 a^8+16 a^7+10 a^6+4 a^5+a^4
In the expanded part, the term "19a^8", how is the coefficient 19 arrived at? Thanks for any help.
Formula trinomial:
(a+b+c)n=n∑i=0n−i∑j=0n!i! j! (n−i−j)!⋅aibjcn−i−j
We have:
(a+a2+a3)4=4∑i=04−i∑j=04!i! j! (4−i−j)!⋅ai(a2)j(a3)4−i−j=4∑i=04−i∑j=04!i! j! (4−i−j)!⋅ai+2j+3⋅(4−i−j)=4∑i=04−i∑j=04!i! j! (4−i−j)!⋅a12−2i−j
We need the coefficient c8 of a8:
So
a12−2i−j=a812−2i−j=8j=4−2i
c8⋅a8=4∑i=04−i∑j=04!i! j! (4−i−j)!⋅a8|j=4−2ic8⋅a8=a8⋅4∑i=04!i! (4−2i)! [4−i−(4−2i)]!c8⋅a8=a8⋅4∑i=04!i! (4−2i)! i!4−2i≥04≥2i2≥ii≤2c8⋅a8=a8⋅2∑i=04!i! (4−2i)! i!c8⋅a8=a8⋅[4!0! (4−2⋅0)! 0!+4!1! (4−2⋅1)! 1!+4!2! (4−2⋅(2))! 2!]c8⋅a8=a8⋅(4!4!+4!2!+4!2! 2!)c8⋅a8=a8⋅(1+3⋅4+3⋅42)c8⋅a8=a8⋅(1+12+6)c8⋅a8=a8⋅19c8⋅a8=19⋅a8