Processing math: 100%
 
+0  
 
0
656
2
avatar

Using the binomial theorem how would you simplify (sqrt(x) +5)^3?..........sqrt= squareroot

 Apr 6, 2016
 #1
avatar
0

You can expand as follows:

Expand the following:
(sqrt(x)+5)^3

(5+sqrt(x))^3  =  sum_(k=0)^3 binomial(3, k) (sqrt(x))^(3-k) 5^k  =  binomial(3, 0) (sqrt(x))^3 5^0+binomial(3, 1) (sqrt(x))^2 5^1+binomial(3, 2) (sqrt(x))^1 5^2+binomial(3, 3) (sqrt(x))^0 5^3:
binomial(3, 0) x^(3/2)+5 binomial(3, 1) x+25 binomial(3, 2) sqrt(x)+125 binomial(3, 3)

binomial(3, 0) = 1, binomial(3, 1) = 3, binomial(3, 2) = 3 and binomial(3, 3) = 1:
5^3+5^2×3 sqrt(x)+5×3 (sqrt(x))^2+(sqrt(x))^3

5^2 = 25:
5^3+25×3 sqrt(x)+5×3 (sqrt(x))^2+(sqrt(x))^3

Cancel exponents. (sqrt(x))^2 = x:
5^3+25×3 sqrt(x)+5×3 x+(sqrt(x))^3

5^3 = 5×5^2:
5×5^2+25×3 sqrt(x)+5×3 x+(sqrt(x))^3

5^2 = 25:
5×25+25×3 sqrt(x)+5×3 x+(sqrt(x))^3

5×25  =  125:
125+25×3 sqrt(x)+5×3 x+(sqrt(x))^3

25×3  =  75:
125+75 sqrt(x)+5×3 x+(sqrt(x))^3

5×3  =  15:
125+75 sqrt(x)+15 x+(sqrt(x))^3

Multiply exponents. (sqrt(x))^3 = x^(3/2):
Answer: |  125+75 sqrt(x)+15 x+x^(3/2)

 Apr 6, 2016
 #2
avatar+26396 
+5

Using the binomial theorem how would you simplify (sqrt(x) +5)^3?..........sqrt= squareroot

 

(x+5)3=(30)(x)350+(31)(x)251+(32)(x)152+(33)(x)053=(30)(x)31+(31)(x)251+(32)(x)152+(33)153=(30)(x)3+(31)(x)251+(32)(x)152+(33)53=(30)x32+(31)x2251+(32)x1252+(33)53=(30)x32+(31)x51+(32)x1252+(33)53

 

(30)=(33)=1(31)=(32)=3

 

(x+5)3=1x32+3x51+3x1252+153=x32+15x+75x12+125(x+5)3=x1.5+15x+75x0.5+125

 

laugh

 Apr 6, 2016

2 Online Users