Processing math: 100%
 
+0  
 
+1
86
1
avatar+1932 

Compute the unique positive integer n such that
2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \dots + n \cdot 2^n = 32.

 Jan 10, 2024
 #1
avatar+291 
+1

222+323+424++n2n=32.

 

We can calculate that 222is 8, and that 323 is 24, and because 8 + 24 is 32, then n is 3, and the equation 222+323+424++n2n=32 is 222+323=32

 

Answer: 3

 Jan 10, 2024

3 Online Users