Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
8
1
avatar+456 

Suppose r and s are the values of x that satisfy the equation
x^2 - 2mx + (m^2 - 6m + 11) = 0
for some real number m.  Find the minimum real value of (r - s)^2.

 Feb 24, 2025
 #1
avatar+130488 
+1

r + s =  2m  

(r + s)^2 = 4m^2 =  r^2  + s^2  + 2rs  →   r^2 + s^2  =  4m^2 - 2rs

And

rs  = (m^2 - 6m + 11)

 

So

(r - s)^2  =  (r^2 + s^2) - 2rs  =   (4m^2 - 2rs) - 2rs  =  4m^2 - 4rs =  4m^2 - 4(m^2 -6m + 11)  =

24m - 44

 

24m  - 44   has no min value

 

cool cool cool

 Feb 25, 2025

3 Online Users

avatar
avatar