Processing math: 100%
 
+0  
 
0
30
2
avatar+1800 

Let x \mathbin{\spadesuit} y = \frac{x^2}{y} for all x and y such that y\neq 0. Find all values of $a$ such that $a \mathbin{\spadesuit} (a + 1) = 9$. Write your answer as a list separated by commas.

 Jun 11, 2024
 #1
avatar+1952 
+1

We want to solve the equation for

a(a+1)=9

 

Now, we plug in the function, and we get the equation 9=a2a+1

 

Now, we simplfy solve the equation. We get

9a+9=a2

a29a9=0

 

Using the quadratic equation, we get

a=313+92a=313+92

 

So our answer is

a=313+92a=313+92

 

Thanks! :)

 Jun 11, 2024
 #2
avatar+135 
0

If xy=x2y, then a(a+1)=a2a+1. Therfore, a2a+1=9. We can now use completing the square to solve for a.

 

a2a+1=9

a2=9a+9

a29a9=0

a29a+20.25=29.25

(a4.5)2=2914

(a92)2=1174

a92=±1172

a=9±3132

 

So the two solutions are (9 + 3sqrt(13))/2, (9 - 3sqrt(13))/2

 Jun 11, 2024
edited by Maxematics  Jun 11, 2024

0 Online Users