Processing math: 100%
 
+0  
 
0
550
1
avatar

Let f(x)=x^2-6x+4 and let g(f(x))=2x+3. What is the sum of all possible values of g(8)?

 Nov 21, 2020
 #1
avatar+9488 
0

Let's find what value(s) of  x  make  f(x) = 8

 

f(x)  =  8

 

x2 - 6x + 4  =  8

 

x2 - 6x - 4  =  0

 

By the Quadratic formula,

 

x = 6±(6)24(1)(4)2(1) = 6±522 = 6±2132 = 3±13

 

And so....

 

f(3+13)=8       and       f(313)=8

 

First let's plug in  3 + √13  for  x  into the function  g( f(x) )  =  2x + 3

 

g( 8 ) = g( f(3+13) ) = 2(3+13)+3 = 9+213

 

Next let's plug in  3 - √13

 

g( 8 ) = g( f(313) ) = 2(313)+3 = 9213

 

And so the sum of all the possible values of  g(8) is:

 

(9+213) + (9213) = 18 .

 Nov 21, 2020

1 Online Users