Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
409
1
avatar

Find all pairs (x,y) of real numbers such that x + y = 10 and x^2 + y^2 = 56 + xy.

 Jul 12, 2021

Best Answer 

 #1
avatar+26396 
+2

Find all pairs (x,y) of real numbers such that
x+y=10x2+y2=56+xy.

 

a+b=10b=10a

 

(x+y)2=x2+2xy+y2(x+y)2=x2+y2+2xy|x2+y2=56+xy102=56+xy+2xy102=56+3xy3xy=100563xy=44|:3xy=443|y=10xx(10x)=44310xx2=443x210x+443=0x=10±10244432x=10±42544432x=10±2254432x=5±25443x=5±75443x=5±313

 

1.

x=5+313y=10a=10(5+313)y=5313

 

2.

x=5313y=10a=10(5313)y=5+313

 

laugh

 Jul 12, 2021
 #1
avatar+26396 
+2
Best Answer

Find all pairs (x,y) of real numbers such that
x+y=10x2+y2=56+xy.

 

a+b=10b=10a

 

(x+y)2=x2+2xy+y2(x+y)2=x2+y2+2xy|x2+y2=56+xy102=56+xy+2xy102=56+3xy3xy=100563xy=44|:3xy=443|y=10xx(10x)=44310xx2=443x210x+443=0x=10±10244432x=10±42544432x=10±2254432x=5±25443x=5±75443x=5±313

 

1.

x=5+313y=10a=10(5+313)y=5313

 

2.

x=5313y=10a=10(5313)y=5+313

 

laugh

heureka Jul 12, 2021

5 Online Users

avatar
avatar