Find all pairs (x,y) of real numbers such that x + y = 10 and x^2 + y^2 = 56 + xy.
Find all pairs (x,y) of real numbers such that
x+y=10x2+y2=56+xy.
a+b=10b=10−a
(x+y)2=x2+2xy+y2(x+y)2=x2+y2+2xy|x2+y2=56+xy102=56+xy+2xy102=56+3xy3xy=100−563xy=44|:3xy=443|y=10−xx(10−x)=44310x−x2=443x2−10x+443=0x=10±√102−4∗4432x=10±√4∗25−4∗4432x=10±2√25−4432x=5±√25−443x=5±√75−443x=5±√313
1.
x=5+√313y=10−a=10−(5+√313)y=5−√313
2.
x=5−√313y=10−a=10−(5−√313)y=5+√313
Find all pairs (x,y) of real numbers such that
x+y=10x2+y2=56+xy.
a+b=10b=10−a
(x+y)2=x2+2xy+y2(x+y)2=x2+y2+2xy|x2+y2=56+xy102=56+xy+2xy102=56+3xy3xy=100−563xy=44|:3xy=443|y=10−xx(10−x)=44310x−x2=443x2−10x+443=0x=10±√102−4∗4432x=10±√4∗25−4∗4432x=10±2√25−4432x=5±√25−443x=5±√75−443x=5±√313
1.
x=5+√313y=10−a=10−(5+√313)y=5−√313
2.
x=5−√313y=10−a=10−(5−√313)y=5+√313