Processing math: 100%
 
+0  
 
0
26
1
avatar+958 

Let $a$ and $b$ be complex numbers. If $a + b = 4$ and $a^2 + b^2 = 6,$ then what is $a^3 + b^3?$

 Jun 21, 2024

Best Answer 

 #1
avatar+49 
+1

(a+b)2=a2+b2+2ab=6+2ab=16, so ab=5. If we do (a+b)3, we can expand it to a3+a2b+ab2+b3 via the binomial theorem. If we focus on the middle terms, we notice we can turn it into ab(a+b), which is equal to 5*4=20. Therefore, a3+b3=6420=44.

 

Feel free to tell me if I did anything wrong! :D

 Jun 21, 2024
 #1
avatar+49 
+1
Best Answer

(a+b)2=a2+b2+2ab=6+2ab=16, so ab=5. If we do (a+b)3, we can expand it to a3+a2b+ab2+b3 via the binomial theorem. If we focus on the middle terms, we notice we can turn it into ab(a+b), which is equal to 5*4=20. Therefore, a3+b3=6420=44.

 

Feel free to tell me if I did anything wrong! :D

Tottenham10 Jun 21, 2024

0 Online Users