Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3
1
avatar+426 

Let (2 + \sqrt{5})(137) = a + b \sqrt{5}, where a and b are integers.  Compute a^2 - 5b^2.

 Feb 22, 2025
 #1
avatar+130466 
+1

(2+5)(137)=a+b5

 

Simplify as

 

274  + 137sqrt (5)

 

a  = 274 =  137*2        b = 137

 

a^2  - 5b^2   =

 

(a  - sqrt (5) b)  ( a +  sqrt(5) b)   =

 

(137 * 2  - 137 sqrt (5)) ( 137 *2   137 sqrt (5))  

 

137(2 - sqrt 5) * 137 (2 + sqrt (5) ) =

 

137^2 *  ( 2 - sqrt 5) (2 + sqrt 5)  

 

137^2 ( 4 - 5)  =

 

137^2 (-1)   

 

-137^2    =   

 

-18769

 

cool cool cool

 Feb 22, 2025

0 Online Users