Let (2 + \sqrt{5})(137) = a + b \sqrt{5}, where a and b are integers. Compute a^2 - 5b^2.
(2+√5)(137)=a+b√5
Simplify as
274 + 137sqrt (5)
a = 274 = 137*2 b = 137
a^2 - 5b^2 =
(a - sqrt (5) b) ( a + sqrt(5) b) =
(137 * 2 - 137 sqrt (5)) ( 137 *2 137 sqrt (5))
137(2 - sqrt 5) * 137 (2 + sqrt (5) ) =
137^2 * ( 2 - sqrt 5) (2 + sqrt 5)
137^2 ( 4 - 5) =
137^2 (-1)
-137^2 =
-18769