Let a1, a2, a3, … be an arithmetic sequence. Let Sn denote the sum of the first n terms. If S20=15 and S10=0, then find S70.
Let's solve this problem step-by-step.
1. Arithmetic Sequence and Sum Formulas
Let the arithmetic sequence be a1,a2,a3,… with first term a1 and common difference d.
The sum of the first n terms, Sn, is given by:
Sn=2n[2a1+(n−1)d]
2. Given Information
S20=51
S10=0
3. Setting up Equations
Using the sum formula, we can write:
S20=220[2a1+(20−1)d]=10(2a1+19d)=51
S10=210[2a1+(10−1)d]=5(2a1+9d)=0
4. Solving the Equations
From 5(2a1+9d)=0, we have:
2a1+9d=0
2a1=−9d
a1=−29d
From 10(2a1+19d)=51, we have:
2a1+19d=501
Substitute 2a1=−9d into 2a1+19d=501:
−9d+19d=501
10d=501
d=5001
Now, substitute d=5001 into 2a1=−9d:
2a1=−9(5001)
2a1=−5009
a1=−10009
5. Find S_70
We want to find S70:
S70=270[2a1+(70−1)d]
S70=35[2a1+69d]
Substitute a1=−10009 and d=5001:
S70=35[2(−10009)+69(5001)]
S70=35[−100018+1000138]
S70=35[1000120]
S70=35[10012]
S70=35[253]
S70=25105=521
Therefore, S70=521.
s10 = 10a1 + (10 * 9)d / 2
s20 = 20a1 + (20 * 19)d / 2
So
0 = 10a1 + 45d → 0 = -20a1 - 90d (1)
1/5 = 20a1 +190d (2)
add (1) , (2)
1/5 = 100d
d = 1/500
And
0 = 10a1 + 45(1/500)
10a1 = -45/500
a1 = -45/5000 = -9/1000
s70 = 70(-9/1000) + (70 * 69)/2 * (1/500) = -630/1000 + 2415 / 500 = 21 / 5