How many different values can $\lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor +\lfloor 4x \rfloor + \lfloor 5x \rfloor + \lfloor 6x \rfloor$ take for $0 \leq x \leq 1$?
How many different values can ⌊x⌋+⌊2x⌋+⌊3x⌋+⌊4x⌋+⌊5x⌋+⌊6x⌋ take for 0≤x≤1 ?