By the Law of Sines:
sinB10=sin(π6)6 sinB=10sin(π6)6 sinB=56 B≈56.44°orB≈123.56°
Both options are valid in this case because neither make the current sum of the angles exceed 180° .
Using the first possible value of B, that is, B = arcsin(5/6)
| Using the second possible value of B, that is, B = π - arcsin(5/6)
|
A=π−B−C A=π−arcsin(56)−π6 A=5π6−arcsin(56) sin(A)=sin(5π6−arcsin(56)) sin(A)=(12)(√116)−(−√32)(56) sin(A)=√11+5√312
By the Law of Sines:
sinABC=sinπ66 sinABC=112 BCsinA=121 BC=12sinA BC=12(5√3+√1112) BC=5√3+√11 | A=π−B−C A=π−(π−arcsin(56))−π6 A=arcsin(56)−π6 sin(A)=sin(arcsin(56)−π6) sin(A)=(56)(√32)−(√116)(12) sin(A)=5√3−√1112
By the Law of Sines:
sinABC=sinπ66 sinABC=112 BCsinA=121 BC=12sinA BC=12(5√3−√1112) BC=5√3−√11 |
the first possible value of BC + the second possible value of BC = (5√3+√11)+(5√3−√11)
the first possible value of BC + the second possible value of BC = 10√3