Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
645
4
avatar

lim_(x->0)(sinx/x)^cotx

 Oct 19, 2015

Best Answer 

 #3
avatar+26396 
+30

limx0(sin(x)x)cot(x)= ?

 

Part 1:

We need

 

 cot(x)=1x13x145x32945x514725x7ln(1+x)=xx22+x33x44+sin(x)=xx33!+x55!x77!+x99!+sin(x)x=x33!+x55!x77!+x99!+sin(x)xx=x23!+x45!x67!+x89!+sin(x)x=1+(sin(x)x1)=1+sin(x)xx 

 

 ln(1+z)=zz22+z33z44+z=sin(x)xx=x23!+x45!x67!+x89!+ln(1+sin(x)xx)=(x23!+x45!x67!+x89!+)112(x23!+x45!x67!+x89!+)2+13(x23!+x45!x67!+x89!+)314(x23!+x45!x67!+x89!+)4 

continued...

 

laugh

 Oct 21, 2015
edited by heureka  Oct 21, 2015
edited by heureka  Oct 21, 2015
 #1
avatar+118703 
+5

 

Heureka could you do it please ? 

 

This is what I think ://

 

lim_(x->0)(sinx/x)^cotx

 

=lim_(x->0)(1)^cotx

 

=1

 Oct 20, 2015
 #2
avatar+33654 
+5

Just to give a visual confirmation of Melody's answer:

 

limit

.

 Oct 20, 2015
 #3
avatar+26396 
+30
Best Answer

limx0(sin(x)x)cot(x)= ?

 

Part 1:

We need

 

 cot(x)=1x13x145x32945x514725x7ln(1+x)=xx22+x33x44+sin(x)=xx33!+x55!x77!+x99!+sin(x)x=x33!+x55!x77!+x99!+sin(x)xx=x23!+x45!x67!+x89!+sin(x)x=1+(sin(x)x1)=1+sin(x)xx 

 

 ln(1+z)=zz22+z33z44+z=sin(x)xx=x23!+x45!x67!+x89!+ln(1+sin(x)xx)=(x23!+x45!x67!+x89!+)112(x23!+x45!x67!+x89!+)2+13(x23!+x45!x67!+x89!+)314(x23!+x45!x67!+x89!+)4 

continued...

 

laugh

heureka Oct 21, 2015
edited by heureka  Oct 21, 2015
edited by heureka  Oct 21, 2015
 #4
avatar+26396 
+30

 

Part 2:

 

limx0(sin(x)x)cot(x)= ?(sin(x)x)cot(x)=eln(sin(x)x)cot(x)=eln(1+sin(x)xx)cot(x)ln(1+sin(x)xx)cot(x)=[(x23!+x45!x67!+x89!+)112(x23!+x45!x67!+x89!+)2+13(x23!+x45!x67!+x89!+)314(x23!+x45!x67!+x89!+)4](1x13x145x32945x514725x7)

 

ln(1+sin(x)xx)cot(x)=[(x26+x4120x65040+x840320+)12(x436x6360+41x8302400+)+13(x6216+x81440+)14(x81296+)](1x13x145x32945x514725x7)

 

 

until x7:

 

ln(1+sin(x)xx)cot(x)=×(1x):x6+x3120x55040+x740320+x372+x572041x7604800+x5648+x74320+x75184+×(1x3):+x318x5360+x715120++x5216x72160++x71944+×(1x345):+x5270x75400++x73240+×(2x5945):+x72835+

 

ln(1+sin(x)xx)cot(x)=x6+x3(1120172+118)+x5(15040+172016481360+1216+1270)+x7(14032041604800+1432015184+11512012160+1194415400+13240+12835)+ ln(1+sin(x)xx)cot(x)=x6+x320+59x511340+401x7680400+ limx0(sin(x)x)cot(x)=limx0eln(sin(x)x)cot(x)=limx0eln(1+sin(x)xx)cot(x)=limx0ex6+x320+59x511340+401x7680400+=e0 limx0(sin(x)x)cot(x)=1 

 

ready.

 

laugh

 Oct 21, 2015
edited by heureka  Oct 21, 2015

0 Online Users