Let a, b, and c, be nonzero real numbers such that a+b+c=0.
Compute the value of
a(1b+1c)+b(1a+1c)+c(1a+1b).
a+b+c=0a+b=−c(1)a+c=−b(2)b+c=−a(3)
a(1b+1c)+b(1a+1c)+c(1a+1b)=ab+ac+ba+bc+ca+cb=ba+ca+ab+cb+ac+bc=b+ca+a+cb+a+bc=−aa+−bb+−cc=−1−1−1=−3
a(1b+1c)+b(1a+1c)+c(1a+1b)=−3
