a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.
a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.
\begin{array}{rcl} (1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\ (2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\ \hline \end{array}\\\\ (2):(1) \begin{array}{rcl} \frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\ \frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\ \ln{(\frac{233}{231})&=& 8\lambda} \\\\ \lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\ \textcolor[rgb]{1,0,0}{ \lambda = 0.00107759288 } \end{array}\\
p0=231eλ∗1991=231e0.00107759288∗1991p0=27.0295384716
exponetial growth formula: p(year)=27.0295384716∗e0.00107759288∗year
p(2003)=27.0295384716∗e0.00107759288∗2003p(2003)=27.0295384716∗e2.15841853962p(2003)=27.0295384716∗8.65743543541p(2003)=234.006484167p(2003)≈234 Million
a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.
\begin{array}{rcl} (1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\ (2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\ \hline \end{array}\\\\ (2):(1) \begin{array}{rcl} \frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\ \frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\ \ln{(\frac{233}{231})&=& 8\lambda} \\\\ \lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\ \textcolor[rgb]{1,0,0}{ \lambda = 0.00107759288 } \end{array}\\
p0=231eλ∗1991=231e0.00107759288∗1991p0=27.0295384716
exponetial growth formula: p(year)=27.0295384716∗e0.00107759288∗year
p(2003)=27.0295384716∗e0.00107759288∗2003p(2003)=27.0295384716∗e2.15841853962p(2003)=27.0295384716∗8.65743543541p(2003)=234.006484167p(2003)≈234 Million