Processing math: 100%
 
+0  
 
0
2641
3
avatar

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros. How many zeros are there at the end of this number.

 Mar 28, 2017
 #2
avatar+26396 
+2

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros.

How many zeros are there at the end of this number.

 

Let n = 2017

 

Legendre's Theorem - The Prime Factorization of Factorials:

p=factorto baseps= the sum of all the digitsexponent =ns1in the expansion of n in base p 211111100001272017721=201032202201392017931=1004531032592017951=502

 

Prime factorization on 2017!:

22010×31004×5502×7334×11200××1999×2003×2011×2017

 

Zeros at the end of 2017!:

2502×5502=(25)502=10502

 

There are 502 zeros at the end of 2017!

 

laugh

 Mar 28, 2017
 #3
avatar
+1

2017 / 5 =403

2017/25 =80

2017/125 =16

2017/625 =3

Number of trailing zeros of 2017! =403 + 80 + 16 + 3 =502.

 Mar 28, 2017

1 Online Users

avatar