Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
769
4
avatar

  the number 1.45450450450450450450450450...... how can be written as an ordinary fraction?

 Jan 14, 2015

Best Answer 

 #2
avatar+26396 
+10

the number 1.45450450450450450450450450...... how can be written as an ordinary fraction ?

\\ \small{\text{ I.  $  1.45450450450450450450450450\dots = 1.4545 + 0.0000\overline{045} = \frac{14545} {10000} + 0.0000\overline{045} =\frac{2909}{2000} + 0.0000\overline{045} $  }}$\\\\$ \small{\text{ II. $ 0.0000\overline{045} = 045*10^{-7} + 045*10^{-10} + 045*10^{-13} + 045*10^{-16} + \dots $ }} $\\$ \small{\text{ $ 0.0000\overline{045} = (\underbrace{045*10^{-7}}_{=a}) + (045*10^{-7}) *10^{-3} + (045*10^{-7})*10^{-6} + (045*10^{-7})*10^{-9} + \dots $ \textcolor[rgb]{1,0,0}{ this is a geometric series. } }} $\\$ \small{\text{ The sum of the geometric series is $ s=\frac{a}{1-r}$ we have $a=045*10^{-7}$ and $ r = \frac{ (045*10^{-7}) *10^{-3} }{ 045*10^{-7} } = \frac{ (045*10^{-7})*10^{-6} }{ (045*10^{-7}) *10^{-3} } = ... = 10^{-3} $  }} $\\$  \small{\text{ $ \begin{array}{rcl} s &=& \frac{ 045*10^{-7} }{ 1- 10^{-3} } \\ \\ &=& \frac{10^3}{10^3}*\frac{ 045*10^{-7} }{ 1- 10^{-3} } \\\\ &=& \frac{45}{10^4(10^3-1)} \\\\ &=& \frac{45}{ 9990000 }  \end{Array}  $ }}$\\\\$ \small{\text{ III.  $ 1.45450450450450450450450450\dots = 1.4545 + 0.0000\overline{045} = \frac{14545} {10000} + 0.0000\overline{045} =\frac{2909}{2000} + \frac{45}{ 9990000 } $ }}$\\\\$ \small{\text{ $ 1.45450450450450450450450450\dots = \frac{2909}{2000} + \frac{45}{ 9990000 }  = \frac{2909}{2000} + \frac{1}{ 2220000 }  = \frac{3229}{2220}  $ }}

 Jan 14, 2015
 #1
avatar+130466 
+8

I seem to do this a little differently from everybody else on here

Forget the whole number part for a moment

Write the non-repeating part and the repeating part of the decimal = 45450

Subtract the non-repeating part from this....=  [45450 - 45  ] = 45405

Put this number over a fraction consisting of 9's and 0's.....the number of leading 9's  equaling the number of digits in the repeating part (3), and the number of trailing 0's equaling the number of digits in the non-repating part (2)..so we have

45405 / 99900 = 1009 / 2220

Add back the  whole number part.....so we have

1 + 1009/2220  = [2220 + 1009] / 2220 = 3229/2220   ...verify for yourself that this is the same as what we started with...!!!

 

 Jan 14, 2015
 #2
avatar+26396 
+10
Best Answer

the number 1.45450450450450450450450450...... how can be written as an ordinary fraction ?

\\ \small{\text{ I.  $  1.45450450450450450450450450\dots = 1.4545 + 0.0000\overline{045} = \frac{14545} {10000} + 0.0000\overline{045} =\frac{2909}{2000} + 0.0000\overline{045} $  }}$\\\\$ \small{\text{ II. $ 0.0000\overline{045} = 045*10^{-7} + 045*10^{-10} + 045*10^{-13} + 045*10^{-16} + \dots $ }} $\\$ \small{\text{ $ 0.0000\overline{045} = (\underbrace{045*10^{-7}}_{=a}) + (045*10^{-7}) *10^{-3} + (045*10^{-7})*10^{-6} + (045*10^{-7})*10^{-9} + \dots $ \textcolor[rgb]{1,0,0}{ this is a geometric series. } }} $\\$ \small{\text{ The sum of the geometric series is $ s=\frac{a}{1-r}$ we have $a=045*10^{-7}$ and $ r = \frac{ (045*10^{-7}) *10^{-3} }{ 045*10^{-7} } = \frac{ (045*10^{-7})*10^{-6} }{ (045*10^{-7}) *10^{-3} } = ... = 10^{-3} $  }} $\\$  \small{\text{ $ \begin{array}{rcl} s &=& \frac{ 045*10^{-7} }{ 1- 10^{-3} } \\ \\ &=& \frac{10^3}{10^3}*\frac{ 045*10^{-7} }{ 1- 10^{-3} } \\\\ &=& \frac{45}{10^4(10^3-1)} \\\\ &=& \frac{45}{ 9990000 }  \end{Array}  $ }}$\\\\$ \small{\text{ III.  $ 1.45450450450450450450450450\dots = 1.4545 + 0.0000\overline{045} = \frac{14545} {10000} + 0.0000\overline{045} =\frac{2909}{2000} + \frac{45}{ 9990000 } $ }}$\\\\$ \small{\text{ $ 1.45450450450450450450450450\dots = \frac{2909}{2000} + \frac{45}{ 9990000 }  = \frac{2909}{2000} + \frac{1}{ 2220000 }  = \frac{3229}{2220}  $ }}

heureka Jan 14, 2015
 #3
avatar+33654 
+8

You've had a mental blackout there somewhere heureka!! (Don't worry, I have them all the time!):

 

recurring

recurring 2

 

 

(In your step II you should probably replace 024 with 045)

.

 Jan 14, 2015
 #4
avatar+26396 
+5

Hi Alan,

thank you very much.

I have replaced 024 with 045

 Jan 14, 2015

1 Online Users

avatar