(1+3+5+⋯+3983)/1992
The sum of the first n odd numbers = n^2
And the number of odd terms is given by [1 + n] / 2
So we have
[1 + 3983] / 2 = 1992 terms
So
1992^2 / 1992 =
1992
1+3+5+⋯+39831992= ? The arithmetic Series 1+3+5+⋯+3983 has a1=1 and an=3983 and d=2 The formula is an=a1+(n−1)⋅d or 3983=1+(n−1)⋅2 So n=1992 The sum =1+3+5+⋯+3983=n(a1+an2)=1992⋅(1+39832)=1992⋅1992 1+3+5+⋯+39831992=1992⋅19921992=1992