# michaelcai

 Benutzername michaelcai Punkte 497 Stats Fragen 93 Antworten 14

0
28
5
+497

### Algrebra Help

michaelcai  11.12.2017 21:57
+1
17
1
+497

### Simplify $(i+1)^{3200}-(i-1)^{3200}$

michaelcai  11.12.2017 21:52
0
18
2
+497

### Find a complex number $z$ such that the real part and imaginary part of $z$ are both integers, and such that $$z\overline z = 89.$$

michaelcai  11.12.2017 21:48
0
23
3
+497

### Compute $1+i+i^2+i^3+i^4+\cdots+i^{2009}$.

michaelcai  11.12.2017 21:47
+2
38
1
+497
michaelcai  04.12.2017
+1
45
2
+497
michaelcai  04.12.2017
+1
32
1
+497

### Some functions that aren't invertible can be made invertible by restricting their domains. For example, the function $x^2$ is invertible if

michaelcai  04.12.2017
+2
35
2
+497

### The function $$f(x) = \frac{cx}{2x+3}$$satisfies $f(f(x))=x$ for all real numbers $x\ne -\frac 32$. Find $c$.

michaelcai  04.12.2017
+2
45
6
+497

### Triangle $ABC$ is inscribed in equilateral triangle $PQR$, as shown. If $PC = 3$, $BP = CQ = 2$, and $\angle ACB = 90^\circ$, then compute $michaelcai 04.12.2017 +2 32 1 +497 ### In the figure,$ABCD$is a square of side length 1, and$M$and$N$are the midpoints of sides$\overline{AB}$and$\overline{CD}$, respecti michaelcai 04.12.2017 +3 41 1 +497 ### Find$AC$in the following triangle, to two decimal places.​ michaelcai 27.11.2017 +2 51 1 +497 ### In right triangle$ABC$, we have$AB = 10$,$BC = 24$, and$\angle ABC = 90^\circ$. If$M$is on$\overline{AC}$such that$\overline{BM}$i michaelcai 18.11.2017 +1 33 1 +497 ### evaluate infinite geometric series: michaelcai 14.11.2017 +2 53 0 +497 ### In right triangle$ABC$, we have$\angle BAC = 90^\circ$and$D$is on$\overline{AC}$such that$\overline{BD}$bisects$\angle ABC$. If$A

michaelcai  13.11.2017
+3
46
1
+497

### In triangle $PQR$, we have $\angle P = 90^\circ$, $QR = 20$, and $\tan R = 4\sin R$. What is $PR$?

michaelcai  13.11.2017
+1
42
1
+497

### Evaluate the sum

michaelcai  13.11.2017
+1
41
1
+497

### What is the positive difference between the sum of the first 20 positive even integers and the sum of the first 15 positive odd integers?

michaelcai  13.11.2017